
NOBLE Professional Edition
Application Programmers Interface (API)

May 20, 2008

Multithread and Multiprocess
Components

The library is designed in an object oriented manner in order to facilitate easy adoption from most
programming languages. The basic interface is provided in the C language and with a template in C++.

All components are handled as individual object classes, which all share common functionality. For each
object class any number of instances can be explicitly created and freed. Of each object class there are a
number of different creator functions that each uses a different implementation. Independent of which
implementation was actually used to create the object instance; the operations performed on the object
instance through the local handles all share the same semantics and syntax.

The user interfaces for fundamental objects that offer general services are described in the following
parts: Atomic Word Operations, Memory Manager.

The user interfaces for the individual data structures are described in the following parts: Stack, Queue,
Deque, Priority Queue, Dictionary, List, and Snapshot. The abstract data types each have several
implementations that are named according to their characteristics. Naturally, LF stands for lock-free, WF
stands for wait-free, and LB stands for lock-based. Concerning the memory requirements of the abstract
data types, B stands for bounded and U stands for unbounded memory usage. Bounded means that
there is an upper bound of how much memory is used for storing a certain number of items, unbounded
implementations have essentially the same memory consumption related to the number of stored items
but can have peaks of considerably more memory requirements due to concurrency and access patterns.

Note that although some creator functions have an argument nrOfBlocks, this only specifies the
initial capacity of the container; as more items are stored and proceeds the initial capacity more system
memory will be allocated automatically. This and other parameters normally need not to be specified, if
not specified a default value will be used for respective argument and implementation.

Member functions (General)

This is a collection of member functions that apply to a majority of the object classes.

C / C++ Syntax Description.

int GetParameter(int parameter);

void *GetParameter(int parameter);
Gets local or global run-time

parameters of a/an Object instance

bool SetParameter(int parameter, int value);

bool SetParameter(int parameter, void

*value);

Sets local or global run-time
parameters of a/an Object instance.

Atomic Word Operations

Creator functions

The NBL::Word object classes can be created using three different implementations. Two
implementations are lock-free and one is wait-free.

C / C++ Syntax Description.

namespace NBL {

 template <int> class Word {

static Word<int>* CreateWF_B(); Creates a new instance using a wait-
free implementation.

static Word<int>* CreateWF_CASN(int

nrOfThreads, int nrOfWords);
Creates a new instance using a wait-
free implementation.

static Word<int>* CreateWF_LL(int

nrOfVariables, int nrOfNodes);
Creates a new instance using a wait-
free implementation.

The implementations of the atomic word object support a subset of the functionality, either basic (B) or
extended functionality of either multi-word updates (CASN) or load-linked updates (LL).

Member functions

C / C++ Syntax Description.

bool Init(void *word, int value); Initializes a memory word for
operation with the word object.

void Deinit(void *word); De-initializes a memory word for
operation with the word object.

int Read(void *word); Reads the content of a memory word.

void Write(void *word, int value); Writes a value to the content of a
memory word.

int Add(void *word, int value); Adds a value to the content of a
memory word.

int Swap(void *word, int value); Exchanges the content of a memory
word.

int Op(void *word, int (*fn)(int old, int

arg), int value);
Updates the content of a memory
word using a custom operation.

bool CAS(void *word, int old, int new); Conditionally updates the content of a
memory word.

bool CASN(void **words, int *olds, int

*news);
Conditionally updates the contents of
a collection of memory words.

int LL(int index, void *word); Reads the content of a memory word,

and starts surveillance for further
updates.

bool VL(int index, void *word); Checks if the content of a memory
word has been updated since the start
of surveillance.

bool SC(int index, void *word, int value); Updates the content of a memory
word only if the content has not been
updated since the start of the
surveillance.

Example

C++ Syntax Description.

int values[2];

NBL::Word<int> *word;
Globals

word = NBL::Word<int>::CreateWF_CASN();

word->Init(values+0,0);

word->Init(values+1,0);

...spawn and run threads...

word->Deinit(values+0);

word->Deinit(values+1);

delete word;

Main procedure

retry:

void *addrs[2];

int olds[2];

int news[2];

for(int i=0;i<2;i++) {

 addrs[i] = values+i;

 olds[i]=word->Read(addrs[i]);

 news[i]=olds[i]+1;

}

if(!word->CASN(addrs,olds,news)) goto retry;

Thread x

The example program above creates a thread that atomically increments two integers in a wait-free
manner.

Memory Management

Creator functions

The NBL::Memory object class can be created using thirteen different implementations. Twelve
implementations are lock-free and one is wait-free. Five implementations support fixed-size memory
blocks, four implementations support multi-size memory blocks, and four implementations support
arbitrary-size memory blocks. The NBL::Memory object is primarily used for handling custom-designed
value objects to be used with various container objects, and supports safe references to dynamically
allocated memory objects such that each individual thread can safely access the contents of these
objects although the objects may be concurrently logically deleted and later garbage collected.

C / C++ Syntax Description.

namespace NBL {

 template <typename T> class Memory {

static Memory<T>* CreateLF_SLB(int

nrOfBlocks, int nrLocalRefs);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_SUU(int

nrOfBlocks);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_MLB(int

nrOfBlocks, int nrLocalRefs);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_WLB(int

nrOfBlocks, int nrLocalRefs);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateWF_SUU(int

nrOfThreads, int nrOfBlocks);
Creates a new instance using a wait-
free implementation.

static Memory<T>* CreateLF_CSLB(

NBLMemorySizeClass *sizeClasses, int

nrSizeClasses, int nrLocalRefs);

Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_CSUU(

NBLMemorySizeClass * sizeClasses, int

nrSizeClasses);

Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_CMLB(

NBLMemorySizeClass * sizeClasses, int

nrSizeClasses, int nrLocalRefs);

Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_CWLB(

NBLMemorySizeClass * sizeClasses, int

nrSizeClasses, int nrLocalRefs);

Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_HSLB(int heapSize,

int nrLocalRefs);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_HSUU(int

heapSize);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_HMLB(int heapSize,

int nrLocalRefs);
Creates a new instance using a lock-
free implementation.

static Memory<T>* CreateLF_HWLB(int heapSize,

int nrLocalRefs);
Creates a new instance using a lock-
free implementation.

The memory manager implementations either support fixed-size, a selection of sizes (C), or arbitrary size
(H) of memory blocks for allocation. The memory reclamation mechanism can either be strong (S),
medium (M), or weak (W) dependent on the ability to keep watch over both global and local pointers.
The number of local pointers that can be handled by each thread can either be limited (L) or unlimited
(U).

Member functions

C / C++ Syntax Description

T *AllocBlock(); Allocates a new memory block of fixed
size.

T *AllocClass(int sizeClass); Allocates a new memory block of
selected size-class.

T *AllocSize(int size); Allocates a new memory block of
arbitrary size.

void DeleteBlock(T *block); Frees a memory block when possible.

T *DeRefLink(T **link); Dereferences a shared memory
pointer.

void CopyRef(T *block); Copies a safe reference.

void ReleaseRef(T *&block); Releases a safe reference.

void StoreRef(T **link, T *block); Stores a reference in a shared
memory pointer.

bool CASRef(T **link, T *old, T *_new); Atomically updates a reference in a
shared memory pointer.

Example

C++ Syntax Description.

class MyObject {

public:

 int x;

 int y;

 int z;

};

NBL::Memory<MyObject> * memory;

MyObject *myObj = NULL;

Globals

memory =

NBL::Memory<MyObject>::CreateLF_SUU();

...spawn and run threads...

delete memory;

Main procedure

MyObject * obj1 = memory->AllocBlock(); Thread x

obj1->x = 1;

obj1->y = 2;

obj1->z = 3;

memory->StoreRef(&myObj,obj1);

memory->ReleaseRef(obj1);

MyObject * obj1 = memory->DeRefLink(&myObj);

if(obj1!=NULL) {

 ...

 memory->StoreRef(&myObj,NULL);

 memory->ReleaseRef(obj1);

}

Thread y

The example program above creates two threads that pass a custom data object between each other.
The data object is allocated and reclaimed by a lock-free memory manager.

Shared Stack

Creator functions

The NBL::Stack object classes can be created using three different implementations. Two
implementations are lock-free and one is wait-free.

C / C++ Syntax Description.

namespace NBL {

 template <typename T> class Stack {

static Stack<T>* CreateLF_B(int nrOfBlocks); Creates a new instance using a lock-
free implementation.

static Stack<T>* CreateLF_U(int nrOfBlocks); Creates a new instance using a lock-
free implementation.

static Stack<T>* CreateLB(); Creates a new instance using a lock-
based implementation.

Member functions

C / C++ Syntax Description

bool Push(T *item); Pushes a new item on the stack.

T *Pop(); Pops an item from the stack.

Example

C++ Syntax Description.

int values[2]={1,2};

NBL::Stack<int> *stack;
Globals

stack = NBL::Stack<int>::CreateLF_B();

...spawn and run threads...

delete stack;

Main procedure

stack->Push(values+0); Thread x

int *value = stack->Pop();

if(value!=NULL) {

 ...

}

Thread y

The example program above creates two threads that pass a reference to an integer between each
other; from thread x to thread y. The means of data transfer is a stack with lock-free operations.

Shared Queue

Creator functions

The NBL::Queue object class can be created using five different implementations. Three
implementations are lock-free, one is wait-free, and one is lock-based.

C / C++ Syntax Description.

namespace NBL {

 template <typename T> class Queue {

static Queue <T>* CreateLF_DB(int

nrOfBlocks);
Creates a new instance using a lock-
free implementation.

static Queue <T>* CreateLF_DU(int

nrOfBlocks);
Creates a new instance using a lock-
free implementation.

static Queue<T>* CreateLF_SB(int nrNodes); Creates a new instance using a lock-
free implementation.

static Queue<T>* CreateWF_SS(int nrNodes); Creates a new instance using a wait-
free implementation.

static Queue <T>* CreateLB(); Creates a new instance using a lock-
based implementation.

The Queue can be based on either a static (S) or dynamic (D) underlying data structure. Some
implementations only support limited concurrency, e.g. single reader and single writer (SS).

Member functions

C / C++ Syntax Description

bool Enqueue(T *item); Puts a new item on top of the queue.

T *Dequeue(); Removes an item from bottom of the
queue.

int Size(); Estimates the current number of
items in the queue.

bool IsEmpty(); Answers whether the queue is empty
or not.

Example

C++ Syntax Description.

int values[2]={1,2};

NBL::Queue<int> *queue;
Globals

queue = NBL::Queue<int>::CreateLF_DB(); Main procedure

...spawn and run threads...

delete queue;

queue->Enqueue(values+0); Thread x

int *value = queue->Dequeue();

if(value!=NULL) {

 ...

}

Thread y

The example program above creates two threads that pass a reference to an integer between each
other; from thread x to thread y. The means of data transfer is a queue with lock-free operations.

Shared Deque

Creator functions

The NBL::Deque object class can be created using four different implementations. Three
implementations are lock-free and one is lock-based.

C / C++ Syntax Description.

namespace NBL {

 template <typename T> class Deque {

static Deque<T>* CreateLF_HB(int nrOfBlocks); Creates a new instance using a lock-
free implementation.

static Deque<T>* CreateLF_HU(int nrOfBlocks); Creates a new instance using a lock-
free implementation.

static Deque<T>* CreateLF_LB(int nrOfBlocks,

int nrOfThreads);
Creates a new instance using a lock-
free implementation.

static Deque<T>* CreateLB(); Creates a new instance using a lock-
based implementation.

The Deque can either offer high (H) or limited (L) level of parallelism.

Member functions

C / C++ Syntax Description

bool PushLeft(T *item); Puts a new item on top of the deque.

bool PushRight(T *item); Puts a new item on bottom of the
deque.

T *PopLeft(); Removes an item from top of the
deque.

T *PopRight(); Removes an item from bottom of the
deque.

Example

C++ Syntax Description.

int values[2]={1,2};

NBL::Deque<int> *deque;
Globals

deque = NBL::Deque<int>::CreateLF_HB();

...spawn and run threads...

delete deque;

Main procedure

deque->PushLeft(values+0); Thread x

deque->PushRight(values+1);

int *value = deque->PopRight();

if(value!=NULL) {

 ...

}

Thread y

int *value = deque->PopLeft();

if(value!=NULL) {

 ...

}

Thread z

The example program above creates three threads that pass references to two integers between each
other; from thread x to thread y and from thread x to thread z. The means of data transfer is a deque
with lock-free operations.

Shared Priority Queue

Creator functions

The NBL::PQueue object class can be created using three different implementations. Two
implementations are lock-free and three is lock-based. Three implementations offer expected
logarithmic search times and two implementations offer logarithmic search time. All implementations
support custom-designed functions for priority comparison and custom data type of priorities.

C / C++ Syntax Description.

namespace NBL {

 template <typename T, typename P = int>

 class PQueue {

static PQueue<T,P>* CreateLF_EB(int

nrOfBlocks, int avgNodes);
Creates a new instance using a lock-
free implementation.

static PQueue<T,P>* CreateLF_EU(int

nrOfBlocks, int avgNodes);
Creates a new instance using a lock-
free implementation.

static PQueue<T,P>* CreateLB_E(int avgNodes); Creates a new instance using a lock-
based implementation.

static PQueue<T,P>* CreateLB_SD(int

nrOfBlocks, int nrOfThreads);
Creates a new instance using a lock-
based implementation.

static PQueue<T,P>* CreateLB_DD(); Creates a new instance using a lock-
based implementation.

The Priority Queue can offer an expected logarithmic (E), deterministic logarithmic (D), or linear (L) time
complexity for searches with respect to their size.

Member functions

C / C++ Syntax Description

bool Insert(int priority, T *item);

bool Insert(P *priority, T *item);
Inserts a new item.

T *DeleteMin();

T *DeleteMin(int *priority);

T *DeleteMin(P **priority);

Removes the item with the lowest
priority.

T *FindMin();

T *FindMin(int *priority);

T *FindMin(P **priority);

Finds the item with the lowest
priority.

Example

C++ Syntax Description.

int values[2]={1,2}; Globals

NBL::PQueue<int,int> *pqueue;

pqueue = NBL::PQueue<int,int>::CreateLF_EB();

...spawn and run threads...

delete pqueue;

Main procedure

pqueue->Insert(values+0,1); Thread x

pqueue->Insert(values+1,2); Thread y

int *value = pqueue->DeleteMin();

if(value!=NULL) {

 ...

}

Thread z

The example program above creates three threads that pass references to two integers between each
other; from thread x to thread z or from thread y to thread z. The means of data transfer is a priority
queue with lock-free operations.

Shared Dictionary

Creator functions

The NBL::Dictionary object class can be created using three different implementations. Three
implementations are lock-free and one is lock-based. Three implementations offer expected logarithmic
search times and one implementation offer linear search time. All implementations support custom-
designed functions for key comparison and custom data type of keys.

C / C++ Syntax Description.

namespace NBL {

 template <typename T, typename K = int>

 class Dictionary {

static Dictionary<T,K>* CreateLF_EB(int

nrOfBlocks, int avgNodes);
Creates a new instance using a lock-
free implementation.

static Dictionary<T,K>* CreateLF_EU(int

nrOfBlocks, int avgNodes);
Creates a new instance using a lock-
free implementation.

static Dictionary<T,K>* CreateLF_LB(int

nrOfBlocks);
Creates a new instance using a lock-
free implementation.

static Dictionary<T,K>* CreateLB_E(int

avgNodes);
Creates a new instance using a lock-
based implementation.

The Dictionary can offer an expected logarithmic (E), deterministic logarithmic (D), or linear (L) time
complexity for searches with respect to their size.

Member functions

C / C++ Syntax Description

bool Insert(int key, T *item);

bool Insert(K * key, T *item);
Inserts a new association.

bool Update(int key, T *item);

bool Update(K * key, T *item);

bool Update(int key, T *item, T **old);

bool Update(K * key, T *item, T **old);

Updates an existing association.

T *Delete(int key);

T *Delete(K * key);
Deletes an association.

T *Find(int key);

T *Find(K * key);
Finds the value associated with a
certain key.

Example

C++ Syntax Description.

class MyObject { Globals

public:

 int x;

 int y;

 int z;

};

MyObject values[2]={{1,2,3},{4,5,6}};

NBL::Dictionary<MyObject,int> *dictionary;

dictionary = NBL::Dictionary<MyObject

,int>::CreateLF_EB();

...spawn and run threads...

delete dictionary;

Main procedure

dictionary->Insert(values+0,1); Thread x

dictionary->Insert(values+1,2); Thread y

MyObject *value = dictionary->Find(1);

if(value!=NULL) {

 ...

}

Thread z

The example program above creates three threads that share references to two custom data objects
between each other, where each data object is associated with a given integer. The means of data
sharing is a dictionary with lock-free operations.

Shared List

Creator functions

The NBL::List object class can be created using five different implementations. Three implementations
are lock-free and two is lock-based. Two of the implementations are singly linked and three are doubly
linked. All implementations support continued traversals from positions with elements possibly deleted
by concurrent operations.

C / C++ Syntax Description.

namespace NBL {

 template <typename T> class List {

static List<T> *CreateLF_SU(int nrOfBlocks); Creates a new instance using a lock-
free implementation.

static List<T> *CreateLB_S(); Creates a new instance using a lock-
free implementation.

static List<T> *CreateLF_DB(int nrOfBlocks); Creates a new instance using a lock-
free implementation.

static List<T> *CreateLF_DU(int nrOfBlocks); Creates a new instance using a lock-
based implementation.

static List<T> *CreateLB_D();

The List can be either singly (S) or doubly (D) linked.

Member functions

C / C++ Syntax Description

bool InsertBefore(T *item); Inserts a new element directly before
the current position.

bool InsertAfter(T *item); Inserts a new element directly after
the current position.

T *Delete(); Deletes the element at the current
position.

T *Read(); Reads the element at the current
position.

void First(); Sets the cursor position to point
directly before the first element.

void Last(); Sets the cursor position to point
directly after the last element.

bool Next(); Traverses the cursor position one step
forwards.

bool Previous(); Traverses the cursor position one step
backwards.

Example

C++ Syntax Description.

int values[2]={1,2};

NBL::List<int> *list;
Globals

list = NBL::List<int>::CreateLF_DB();

...spawn and run threads...

delete list;

Main procedure

list->First();

list->InsertAfter(values+0);
Thread x

list->Last();

list->InsertBefore(values+1);
Thread y

list->First();

while(list->Next()) {

 int *value = list->Read();

 if(value!=NULL) {

 ...

 }

}

Thread z

list->Last();

while(list->Previous()) {

 int *value = list->Delete();

 if(value!=NULL) {

 ...

 }

}

Thread w

The example program above creates four threads that share references to two integers, where each data
object is associated with a given integer. The means of data sharing is a doubly-linked list with lock-free
operations.

Shared Snapshot

Creator functions

The NBL::Snapshot object class can be created using three different implementations. Three
implementations are wait-free and one is lock-based.

C / C++ Syntax Description.

namespace NBL {

 template <typename T> class Snapshot {

static Snapshot<T>* CreateWF_SS(int

components);
Creates a new instance using a wait-
free implementation.

static Snapshot<T>* CreateWF_SM(int

components, int writers);
Creates a new instance using a wait-
free implementation.

static Snapshot<T>* CreateWFR_SM(int

components, int *cycles);
Creates a new instance using a wait-
free implementation.

static Snapshot<T>* CreateLB(int components); Creates a new instance using a lock-
based implementation.

The Snapshot can support a single (S) scanner together with either single (S) or multiple (M) updaters.

Member functions

C / C++ Syntax Description

void Scan(T *values[]); Scans the components of the
snapshot object.

void Update(int component, T *value); Updates a single component of the
snapshot object.

Example

C++ Syntax Description.

int values[2]={1,2};

NBL::Snapshot<int> *snapshot;
Globals

snapshot =

NBL::Snapshot<int>::CreateWF_SM(2);

...spawn and run threads...

delete snapshot;

Main procedure

snapshot->Update(0,values+0); Thread x

snapshot->Update(1,values+1); Thread y

int scan[2];

snapshot->Scan(scan);
Thread z

