NOBLE
Professional Edition
v2.2

DEVELOPERS MANUAL

March 3, 2009

© 2009 Parallel Scalable Solutions AB
All rights reserved

Preface

NOBLE Professional Edition is a software library for multi-thread
and multi-process environments. It is developed by Dr. Hakan Sundell
with overall directions by Prof. Dr. Philippas Tsigas. NOBLE Pro-
fessional Edition is a new product developed from scratch, influenced
by the NOBLE research project. NOBLE Professional Edition is devel-
oped with a much larger scope than the research project, and does
not include any remains from it besides the name, concept, and ap-
proach. The NOBLE research project was initiated in 2001 by Prof. Dr.
Philippas Tsigas at the Department of Computer Science at Chalmers
University of Technology in Sweden, with development work mainly
conducted by Dr. Hakan Sundell.

NOBLE Professional Edition is a proprietary product belonging to
the Swedish company Parallel Scalable Solutions AB. NOBLE Profes-
sional Edition may only be used with license from Parallel Scalable
Solutions AB, and may not be sold, copied, modified, examined etc. in
parts or in whole, without the explicit permission by its authors.

© 2009 Parallel Scalable Solutions AB
© 2009 Hakan Sundell and Philippas Tsigas

ii

Contents

1

[1.1 Getting Started| 1
.............................. 1

1.1.2 C+H. 3

1.2 How to read the manual pages|. 3
1.3 TechnicalInformation] « - « v v v v v v v v v e e 4
1.3.1 Source Code Package| 4
1.3.2 Usage| 4

[2_ Components| 5
Bl AVAl@bIHLY . . . o o o o 7
22 GeneralFunclions]« v v v v v v 9
B2 T .ot 9
2,22 CHH. 9
2.2.3 NBLObjectFree| 10
.................. 11

2.2.5 NBLObjectFreeHandle| 12
................. 13
................. 15

17

18

19

2.4.1 Memory Parameters| 19
2.4.2_ User-Object Memory-Manager Parameters| 19
[2.4.3 Back-Off Parameters|. 20
[2.4.4 Priority Queue Parameters| 20
[2.4.5 Dictionary Parameters|. 21

|3 Atomic Word Operations| 23
Bl OVEIVIEW! . . . v v ot oo e e e e e e e 23
BT O .. 23

3. 1.2 C+H. 24
[3.1.3 Limitations in Functionality] 26

3.2 Examples| o 26

iii

iv Contents
B2T Q... e 26
3.2.2 CHH. e 27

B3 Crealionl. . .« - v v v o e e 29
B.3.17 NBLWordCreateWF Bl v v v v v v v v .. 29
[3.32 NBILWordCreateWF CASNl. 30
.................. 32

[3.4 Operations| 34
....................... 34
...................... 35
3.4.3 NBLWordRead| 36
3.4.4 NBLWordWrite] 37
....................... 38
3.4.6 NBLWordSWap] . . . - o o o ooeeee e oo 39
3.4.7 NBLWOrdOD|. . . « - o oo oo 40
3.4.8 NBLWordCAS] o v oo 42

4.9 NBLWordCASN| o v oo 44
BZAIONBLWOrdLI o v o voe e e e e e 46
BZATINBLWOrdVI v v oo e ee e e e e 47
BZATI2NBLWordSCl. . . . o o oo e e 48

[4 Memory Management| 51

BT OVEIVIEWl . . .« o o o oo e e e e e 52
9 0 O O 52
4.1,2 CHH. . . e 53

E2 Creafionl. . . - - v o v oo e 56
4.2.1 NBLMemoryCreateLF. SLB| 57
4.2.2 NBLMemoryCreateLF.CSLB| 59

€mo reateLF_ HSLB| 61

2. €mo reateLF.SUU| 63
2.5.5 NBLMemoryCreateLF CSUU| 65
2. €mo reateLF HSUU| 67
€mo reateLF MLB| 69

€mo reateLE CMLB| 71

2. €mo reateLF HMLB| 73
2.3 TONBLMemoryCreateLEWLB] 75
2. €mo reateLF CWLB| 77
2. €mo reateLF HWLB| 79
1.2 T3NBLMemoryCreateWF_.SUU|. 81

@3 Operations] 83
4.3.1 NBLMemoryAllocBlock] 83
4.3.2 NBLMemoryAllocClass|. 84
4.3.0 NBLMemoryAllOGSIZE+ . o oo oo oo 85
4.5.4 NBLMemoryDeleteBIocK]. 86
4.3.5 NBLMemoryDeRefLink| 87
4.3.6 NBLMemoryCopyRel|ot .. 89
4.3.7 NBLMemoryReleaseRel] 90

Contents v
4.3.8 NBLMemoryStoreRef{. 91
4.3.9 NBLMemoryCASRef] 92

5 Shared Stackl 95

BI OVErVIEW! . . .« o o oo e e e e e 96
BT Q.o e 96
............................. 96

0.2 Examples|o 00 o000 97
5557275 1o 97
............................. 98

B3 Crealionl . . « -« v v v v e e e e e e 100
5.3.1 NBLStackCreate Bl 101
5 NBLStackCreate] 103
(.33 NBLStackCreateLBl. v v v v ii e 104

[5.4 Operations| 105
5.4.1 NBLStackPushl 105

4.2 NBLStackPop| 106

6 Shared Queue 107

6.1 OVerviewl i e e e e e e e e 108
6.1.1 Cl . . . e 108
6.1.2 C+H. 109

[6.2 Examples|, 109
6.2.1 Cl e 109
6.2.2 CH+H. e 111

6.3 Creafionl e 112
[6.3.T NBLQueueCreateWF.SS|. 113
6.3.2 NBLQueueCreateLE DB|. 114
6.3.3 NBLQueueCreateLF.SB| 115
6.3.4 NBLQueueCreateLF DU|. 116
6.3.5 NBLQueueCreateLB| 117

6.4 Operations| 118
6.4.1 NBLQueueEnqueuel 118
6.4.2 NBLQueueDequeue| 119
5.4.5 NBLQUEUEISEMPLYl. - - « « « o oo oo e oo n 120
6.4.4 NBLQueueSize] v ... 121

123

[ZI OVEIVIEW! . . . o o oo e e e e e e e e 124
7228 P P 124
7.1.2 CHH. . . e 125

(72 Examples| 0 0000000 126
725275 W 126
[7.2.2 CHH. 127

[Z3 Crealionl . . -« - v v oo e e e 129
[7.3.1T NBLDequeCreateLF HB| 129

vi Contents
[7.3.2 NBLDequeCreateLF HU| 131
[7.3.3 NBLDequeCreateLF LB 133
[7.3.4 NBLDequeCreateLB| 134

7.4 Operations| e e 135
|7.4. 1 NBLDeguePushLefg 135
.................. 136
.................... 137
[7.4.4 NBLDeqQUePOPRIGHT . . . « « o o o o oo 138

[8 Shared Priority Queue]| 139

............................. 140
B. 1.1 Cl e e 140
B8.1.2 C+H. e 141

8.2 Examples| 0000 142
8.2.1 Cl e 142
8.2.2 C+H. e 143

B3 Creafionl . - .« v v v v oo e e 145
[8.3.T NBLPQueueCreateLF EB| oo 145
[8.3:2 NBLPQueueCreateLF EU| 147
[8.3.3 NBLPQueueCreateLBSD| 149
8.3.4 NBLPQueueCreateLB.DD|. 151
[8:3.5 NBLPQueueCreateLBE| 152

8.4 Operations| e 153
[8.4.1T NBLPQueuelnsert] 153
8.4.2 NBLPQueueDeleteMin|. 155
8.4.3 NBLPQueueFindMin|. 156

|9 Shared Dictionary]| 157

OI1 Overviewl o v v i i 158
O.1.1 Cl e 158
............................. 159

9.2 Examples| o 160
9.2.1 Cl e 160
9.2.2 C+H. e 161

9.3 Creationl. e 163
9.3.1 NBLDictionaryCreateLF EB|. 163
--------------- 165
mm 167
[9.3.4 NBLDictionaryCreateLBE| 169

erations| e 170
.4.1 NBLDictionarylnsert|. 170
9.4.2 NBLDictionaryUpdate| 172
................... 174
9.4.4 NBLDictionaryFind|. 176
[9.4.5 NBL::Dictionary::SetValueMemoryHandler] 177

CONTENTS

10. 10verview]

11.3.1NBLSnapshotCreateWF_SS| .

11.3.2NBLSnapshotCreateWF_SM] .
11.3.3NBLSnapshotCreateWFR_SM

11.3.4NBLSnapshotCreateLB| . . .
|11.4O0perations|

11.4.1NBLSnapshotScan|
11.4.2NBLSnapshotUpdate]

(12 Configuration|

12.1 Memo ocation|.

12.2Mutual Exclusion]
[12.3Examples|

viii

CONTENTS

Chapter 1

Introduction

Noble is a software package. Main areas of applications are within
the Parallel and Real-Time Systems community where concurrency is
needed.

Noble consists of several implementations of commonly used data
structures. This kind of structures like stacks, queues, lists etceteras
need some kind of synchronization when used in concurrent environ-
ments. These environments can be multitasking systems, parallel com-
puters as well as distributed real-time systems. The most common
synchronization method involves some kind of locks, which enforces
blocking.

Noble provides several non-blocking implementations of common
data structures as well as lock based ones. The users can change syn-
chronization method transparently to the one that suits best for the
current application, even in run-time. With Noble the users can take
benefits of non-blocking protocols without thorough knowledge in the
wait and lock-free community.

Noble is easy to use and supports most programming languages as
it is written in C. Several platforms and computer architectures are
supported and more are planned in the future.

1.1 Getting Started

1.1.1 C

Use a text editor to create a file program.c, with the following code:

#include <stdio.h>
#include "Noble.h"

int main(int argc, char xxargv)

CHAPTER 1.

INTRODUCTION

NBLStackRoot =*stack; /x Stack object =/
NBLStack *handle; /* Stack handle =x/
int item=10;

int *data; /* Pointer to the data x/

/+ Initialize the stack object =/
stack = NBLStackCreateLF_B(100);

/+ Create a stack handle =/
handle = NBLStackGetHandle (stack) ;

/* Push the data on the stack =*/
NBLStackPush (handle, &item);

/* Pop the data off the stack x/
data = NBLStackPop (handle) ;

/* Print the data x/
printf ("$d\n", (int) xdata) ;

/* Free the handle x/
NBLStackFreeHandle (handle) ;

/+* Free the stack =/
NBLStackFree (stack) ;

return 0;

Put the following Makefile in the same directory. It uses the gnu c
compiler. You may have to change the path to the include files.

Makefile for the stack program
CC = gcc

SRC = program.c

OBJS = program.o

CFLAGS = -I../Include/
all: test_noble
test_noble: S (OBJS)

$(CC) S$(OBJS) -L/usr/lib ../Lib/1ibNOBLE.a

program.o: program.cC

c@c®8
$(CC) $(CFLAGS) -c S$x.c -0 S$x.0

1.2. HOW TO READ THE MANUAL PAGES 3

Use the make command to compile the file.

1.1.2 C++

Use a text editor to create a file program.cpp, with the following code:

#include <stdio.h>

#include "NobleCPP.h"

int main(int argc, char xxargv)

{
NBL: :Stack<int> xstack; /% Stack object =/
int item=10;

int xdata; /x Pointer to the data x/

/* Initialize the stack object =/
stack = NBL::Stack<int>::CreatelLF_U();

/* Push the data on the stack =*/
stack->Push (&item) ;

/* Pop the data off the stack =*/
data = stack->Pop();

/* Print the data =/
printf ("%d\n", (int) *xdata) ;

/* Free the stack =/
delete stack;

return 0;

1.2 How to read the manual pages
The descriptions of the functions have the following parts:

Name The name of the function.
Description Description of what the function does

Synopsis The definition of the function, and its operations. Similar to
the include file for the data structures.

Parameters Description of the individual parameters that should be
provided when calling the function.

4 CHAPTER 1. INTRODUCTION

Return Values Description of the different values that this function
can produce as a result of execution.

Remarks Extra information about this function that has to be under-
stood and properly handled before using this function.

Requirements What kind of system requirements that is demanded to
be able to use this function.

See Also A list of similar or closely connected functions.

1.3 Technical Information

This section describes what files are included in the library, and the
systems it is implemented on.

1.3.1 Source Code Package

The following files and subdirectories are included:

Include/ Include directory.
Noble.h The main C/C++ declarations of Noble
Lib/ Library files.

Noble.lib The library file to link with the executable (Win32).
libNoble.a The library file to link with the executable (Unix).

1.3.2 Usage

To use a specific data structure the header file for Noble has to be
included into the program.
#include "Noble.h”

Chapter 2

Components

The library is designed to provide easy access to the components, with
names that describe what the operations do and follow common prac-
tice. Since the data structures are very common, most of the names
are obvious. All functions have the prefix NBL to avoid name conflicts
in the development environment.

The interface has been specified to make it easy to change from
one implementation of a data structure to another. For example, this
makes it easy to change from a lock-based to a lock-free implementa-
tion of a particular data structure. The interface is designed with an
object-oriented approach. In order to facilitate dynamic attachment of
threads vs. processes to the shared objects, the objects are accessed
via a two-level hierarchy. The hierarchy of the shared object in NOBLE
constitutes of one root object and an arbitrary number of handle ob-
jects. The root object is created as an instance of shared data object
(e.g. when NBLObjectCREATEX is called for the specific object and im-
plementation). Each process vs. thread can attach to a root object and
need to create a corresponding handle in order to perform operations
on the shared data object instance. Independent of which implemen-
tation was actually used to create the object instance; the operations
performed on the object instance through the local handles all share
the same semantics and syntax.

The user interfaces for fundamental objects that offer general ser-
vices are described in the following parts:

Atomic Word Operations See Chapter[3]
Memory Manager See Chapter [4]

The user interfaces for the individual data structures are described
in the following parts:

Stack See Chapter[5]

CHAPTER 2. COMPONENTS

Queue See Chapter [6]

Deque See Chapter[7]
Priority Queue See Chapter
Dictionary See Chapter [9]
List See Chapter
Snapshot See Chapter[11]

2.1. AVAILABILITY 7

2.1 Availability

The Demo version of NOBLE, which can freely be used for evaluation
purposes only, does not permit access to all implementations available
in the fully licensed version. Below follows a description of the avail-
able implementations for respective data structures and distribution
package:

Stack LF B -
LF U X
LB X
Queue WF_SS -
LF DB
LF DU
LF SB
LB
Deque LF HB
LF HU
LF LB
LB
PQueue LF_EB
LF EU
LB _SD
LB DD
LB E
Dictionary | LF_EB
LF EU
LF LB
LB E
List LF SU
LF DB
LF DU
LB_S
LBD

Mo

Mo

o

Mo

R ool

Mo

ol

R R R el R e i e e e i il R i R i

P4 K

CHAPTER 2. COMPONENTS

o
X0
<&
eés"‘\&
5@
424

Snapshot

WF_SS
WF_SM
WFR_SM
LB

Word

WF_B
WF_CASN
LF LL

Memory

LF_SLB
LF_SUU
LF_MLB
LF_ WLB
LF_CSLB
LF_CSUU
LF_CMLB
LF_CWLB
LF_HSLB
LF_HSUU
LF_HMLB
LF_ HWLB
WF_SUU

el eloR el el e R e Rl R a ol o Re

Attempted usage of an unavailable implementation will result in the
automatic use of the nearest (compatible) available implementation,
i.e., the standard lock-based implementation.

2.2. GENERAL FUNCTIONS 9

2.2 General Functions

This is a collection of functions that apply to a majority of the shared
data structures.

2.2.1 C

NBLObjectFree Frees the memory used by a/an Object instance. See
Section [2.2.3]

NBLObjectGetHandle Creates a new local handle to a/an Object in-
stance. See Section

NBLObjectFreeHandle Frees the memory used by a handle of a/an
Object instance. See Section [2.2.5]

NBLObjectGetParameter Gets local or global run-time parameters of
a/an Object instance. See Section [2.2.6]

NBLObjectSetParameter Sets local or global run-time parameters of
a/an Object instance. See Section [2.2.7]

In the previous functions, Object denotes any of Memory, Stack,
Queue, Deque, PQueue, Dictionary, List or Snapshot.

2.2.2 C++

NBL::Object::GetRootParameter Gets local or global run-time param-
eters of a/an Object instance. See Section

NBL::Object::SetRootParameter Sets local or global run-time param-
eters of a/an Object instance. See Section [2.2.7]

NBL::Object::GetLocalParameter Gets local or global run-time param-
eters of a/an Object instance. See Section [2.2.6]

NBL::Object::SetLocalParameter Sets local or global run-time param-
eters of a/an Object instance. See Section [2.2.7]

10 CHAPTER 2. COMPONENTS

2.2.3 NBLObjectFree

Frees all the global shared memory used by a/an Object instance.

Syntax C

void NBLObjectFree (
NBLObjectRootx object
)i

Syntax C++

delete object;

Parameters

object
[in] A pointer to a/an Object instance.

Return Values

This function does not return any value.

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

2.2. GENERAL FUNCTIONS 11

2.2.4 NBLObjectGetHandle

Creates a new local handle to a/an Object instance.

Syntax C

NBLObject % NBLObjectGetHandle (
NBLObjectRoot* object
)i

Parameters

object
[in] A pointer to a/an Object instance.

Return Values

If successful the function returns a pointer to a local handle of a/an
Object instance. Otherwise it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

12 CHAPTER 2. COMPONENTS

2.2.5 NBLObjectFreeHandle

Frees all local memory used by a handle of a/an Object instance.

Syntax C

void NBLObjectFreeHandle (
NBLObject* handle
)i

Parameters

handle
[in] A pointer to local handle of a/an Object instance.

Return Values

This function does not return any value.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

2.2. GENERAL FUNCTIONS 13

2.2.6 NBLObjectGetParameter

Gets local or global run-time parameters of a/an Object instance.

Syntax C

void x NBLObjectGetParameter (
NBLObject* handle,
NOBLE_PARAM param

)i

void » NBLObjectGetParameter (
NBLObjectRootx object,
NOBLE_PARAM param

)

Syntax C++
void * NBL::0Object::GetLocalParameter (

NOBLE_PARAM param
)

void * NBL::0Object::GetRootParameter (
NOBLE_PARAM param
)i

Parameters

object
[in] A pointer to a/an Object instance.

handle
[in] A pointer to a local handle of a/an Object instance.

param
[in] The local or global run-time parameter to get the current
value for.

Return Values

If successful the function returns the value associated with the given
parameter. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

14 CHAPTER 2. COMPONENTS

See Also

2.2. GENERAL FUNCTIONS 15

2.2.7 NBLObjectSetParameter

Sets local or global run-time parameters of a/an Object instance.

Syntax C

int NBLObjectSetParameter (
NBLObject* handle,
NOBLE_PARAM param,
void xvalue

)i

int NBLObjectSetParameter (
NBLObjectRoot* object,
NOBLE_PARAM param,
void xvalue

)i
Syntax C++

bool NBLObjectSetLocalParameter (
NOBLE_PARAM param,
void xvalue

)i

bool NBLObjectSetRootParameter (
NOBLE_PARAM param,
void =*value

)i
Parameters
object

[in] A pointer to a/an Object instance.

handle
[in] A pointer to a local handle of a/an Object instance.

param
[in] The local or global run-time parameter to set.

value
[in] The value that the local or global run-time parameter
should be set to.

Return Values

If successful the function returns true. Otherwise the parameter could
not be set and the function returns false.

16 CHAPTER 2. COMPONENTS

Remarks

On-line parameters that are set on global (i.e. object) level are inherited
on local (i.e. handle) level when the respective handles are created.
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

2.3. MULTI-PROCESS VERSUS MULTI-THREAD 17

2.3 Multi-Process versus Multi-Thread

The library is by default configured for multi-thread usage, i.e. an envi-
ronment with shared memory where also the code area for the library is
located at the same memory address for all the threads. It is possible
to configure the library to also work in a multi-process environment,
i.e. an environment with shared memory where the code area for the li-
brary could be located at different memory addresses for each process.
The following function is defined for activating multi-process support.

NBLObjectMultiProcessEnable Enable the multi-process usage of a
particular object instance. See Section [2.3.1]

18 CHAPTER 2. COMPONENTS

2.3.1 NBLObjectMultiProcessEnable

Enable the multi-process usage of a particular object instance.

Syntax

void NBLObjectMultiProcessFree (
NBLObjectRoot* object
)i

Parameters

object
[in] A pointer to a/an Object instance, where Object denotes
any of Memory, Stack, Queue, Deque, PQueue, Dictionary,
List or Snapshot.
Return Values

This function does not return any value.

Remarks

This function must be called before the pointer to the object instance
can be shared with any other process in the multi-process environ-
ment. Only after this function is called can local handles to the object
instance be safely created by the other processes.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

2.4. ON-LINE PARAMETERS 19

2.4 On-Line Parameters

All objects and handles support the NBLObjectGetParameter() and NBLObjectGetParameter()
functions, that can retrieve or change specific run-time parameters.
The handles normally inherit all the parameter settings of the global
objects at the time of creation of the handle.
Which certain parameters that can be tuned, are specific for each
implementation of a shared data structure, and are listed together with
the description of the respective object creation function.

2.4.1 Memory Parameters

Here is a list of parameters that access settings that are specific to the
memory managers.

PARAM_MEM_OVERHEAD SIZE Specifies in bytes the overhead that
the memory manager imposes on each memory block. Read-only
parameter.

PARAM MEM FIXED ALLOC Specifies whether (true or false) the mem-
ory handler should call the default global memory handler for re-
serving more memory whenever the memory reserved at creation
is all allocated. The default setting for this parameter is true.

PARAM _MEM CB RELEASE REFS Specifies the callback function that
should be called whenever the memory manager is about to free a
memory block.

PARAM _MEM _CB_REDUCE _CHAIN Specifies the callback function that
should be called whenever the memory manager wants to make
sure that a memory block that is about to be freed does not con-
tain any links to other memory blocks that is about to be freed.

PARAM MEM _CB_ARG1 Specifies the first argument that should be
given to the callback functions when they are called by the mem-
ory manager.

2.4.2 User-Object Memory-Manager Parameters

Here is a list of parameters that access settings that are specific for
specifying what memory manager that should be used for value pa-
rameters and return values for various data structures.

PARAM VALUE_MEMORY HANDLE Specifies the local handle to the
memory manager object that should be used for handling value
parameters and return results for various data structures. Pa-
rameter is given as a pointer to NBLMemory. Write-only, local-only
parameter.

20 CHAPTER 2. COMPONENTS

PARAM VALUE MEMORY _ROOT Specifies the instance of a memory
manager object that should be used for handling value param-
eters and return results for various data structures. Parameter
is given as a pointer to NBLMemoryRoot. Write-only, global-only
parameter.

Note that for proper usage, the previous on-line parameters have to
be set on both global and local level , i.e. the PARAM_VALUE_MEMORY_ROOT
parameter must be set on global level of the data structure object and
the PARAM_VALUE_MEMORY_HANDLE parameter must be set on all
handles to the data structure object.

C++

By using the class template for the Dictionary creation and specifying
the appropriate value type, the PARAM_VALUE_ MEMORY_ROOT and
PARAM_VALUE_MEMORY _HANDLE parameters can be omitted by in-
stead calling the method SetValueMemoryHandler, see Section [9.4.5

2.4.3 Back-Off Parameters

Here is a list of parameters that affect the back-off strategy used by
some implementation. The back-off is used for tuning the specific al-
gorithm to the current situtation of contention on the shared memory,
and thus achieving maximum overall performance.

PARAM BACK OFF TYPE Specifies the type of back-off strategy that
should be used. The different types available are:

BOT_LINEAR The amount of iterations during each back-off, is
increased linearly for every subsequent back-off during one
operation invocation.

BOT _EXPONENTIAL The amount of iterations during each back-
off, is increased exponentially for every subsequent back-off
during one operation invocation.

PARAM BACK_OFF _INIT The initial amount of iterations (of local com-
putations) that is done during each back-off instance.

PARAM BACK_OFF_MAX The maximum amount of iterations that can
be done during each back-off instance.

2.4.4 Priority Queue Parameters

Here is a list of parameters that access settings that are specific to the
the priority queue data structure.

2.4. ON-LINE PARAMETERS 21

PARAM PRI COMPARE FN Specifies a user-defined function that com-
pares two priorities and decides whether pril < pri2, pril = pri2
or pril > pri2, returning -1, O or 1 respectively. The syntax of the
function is
int comparefn(const void *pril, const void *pri2).

C++

By using the class template for the PQueue creation and specifying the
appropriate value type, the PARAM_KEY_ COMPARE_FN parameter can
be omitted by instead properly defining the corresponding operators for
comparison of the specified value type K:

bool operator < (const K &tl, const K &t2);
bool operator == (const K &tl, const K &t2);

2.4.5 Dictionary Parameters

Here is a list of parameters that access settings that are specific to the
the dictionary data structure.

PARAM KEY COMPARE FN Specifies a user-defined function that com-
pares two keys and decides whether keyl < key2, keyl = key2 or
keyl > key2, returning -1, O or 1 respectively. The syntax of the
function is
int comparefn (const void xkeyl, const void xkey2).

C++

By using the class template for the Dictionary creation and specifying
the appropriate value type, the PARAM_KEY_ COMPARE FN parameter
can be omitted by instead properly defining the corresponding opera-
tors for comparison of the specified value type K:

bool operator < (const K &tl, const K &t2);
bool operator == (const K &tl, const K &t2);

22

CHAPTER 2. COMPONENTS

Chapter 3

Atomic Word Operations

The Word object allows atomic operations on a single or a collection of
memory words, i.e. the object allows transactions on a set of memory
words.

The implementations available of the Word object are:

e A Wait-Free implementation offering basic (i.e. native) operations
support.

e A Wait-Free implementation offering basic and transaction opera-
tions support.

e A Lock-Free implementation offering basic and surveillance oper-
ations support.

Not all of the implementations support all operations. However, all
of the available implementations of the word object offer the same high-
level semantics where the specific operation is supported.

The detailed semantics of these operations are described in the re-
spective detailed description of each individual operation.

3.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

3.1.1 C

NBLWordCreateWF B Creates a new instance of a word object using a
wait-free implementation. See Section [3.3.1]

NBLWordCreateWF_CASN Creates a new instance of a word object us-
ing a wait-free implementation. See Section [3.3.2]

23

24 CHAPTER 3. ATOMIC WORD OPERATIONS

NBLWordCreateLF LL Creates a new instance of a word object using
a lock-free implementation. See Section [3.3.3]

NBLWordInit Initializes a memory word for use with the word object.
See Section

NBLWordDeinit De-initializes a memory word after use with the word

object. See Section
NBLWordRead Reads the content of a memory word. See Section|3.4.3

NBLWordWrite Writes a value to the content of a memory word. See

Section [3.4.4]

NBLWordAdd Adds a value to the content of a memory word. See Sec-
tion

NBLWordSwap Exchanges the content of a memory word. See Section
3.4.6]

NBLWordOp Updates the content of a memory word using a custom
operation. See Section

NBLWordCAS Conditionally updates the content of a memory word.
See Section

NBLWordCASN Conditionally updates the contents of a collection of
memory words. See Section |3.4.9

NBLWordLL Reads the content of a memory word, and starts surveil-
lance for further updates. See Section [3.4.10

NBLWordVL Checks if the content of a memory word has been updated
since the start of surveillance. See Section [3.4.111

NBLWordSC Updates the content of a memory word only if the con-
tent has not been updated since the start of the surveillance. See
Section

3.1.2 C++

namespace NBL {
template <int> class Word {

// Constructors

static Word<int>x CreateWF_B () ;

static Word<int>* CreateWF_CASN (int nrOfThreads, int
nrOfWords) ;

static Word<int>x CreateWF_LL (int nrOfVariables, int
nrOfNodes) ;

// Operations

3.1. OVERVIEW 25

bool Init (void *address, int value);
void Deinit (void xaddress);
int Read(void =*address) ;
void Write (void raddress, int value);
int Add(void =*address, int value);
int Swap(void =xaddress, int next);
int Op(void =xaddress, int (xfn) (int old, int arg), int
value);
bool CAS (void =xaddress, int old, int next);
bool CASN(int n, void **addresses, int xolds, int xnexts);
int LL(int nr, void =*address);
bool VL (int nr, void =xaddress);
bool SC(int nr, void =xaddress, int value);
}i
bi

NBL::Word::CreateWF B Creates a new instance of a word object using
a wait-free implementation. See Section [3.3.1]

NBL::Word::CreateWF_CASN Creates a new instance of a word object
using a wait-free implementation. See Section[3.3.2]

NBL::Word::CreateLF LL Creates a new instance of a word object us-
ing a lock-free implementation. See Section [3.3.3

NBL::Word::Init Initializes a memory word for use with the word ob-
ject. See Section [3.4.1]

NBL::Word::Deinit De-initializes a memory word after use with the
word object. See Section [3.4.2]

NBL::Word::Read Reads the content of a memory word. See Section

NBL::Word::Write Writes a value to the content of a memory word. See
Section

NBL::Word::Add Adds a value to the content of a memory word. See
Section [3.4.5]

NBL::Word::Swap Exchanges the content of a memory word. See Sec-
tion

NBL::Word::Op Updates the content of a memory word using a custom
operation. See Section [3.4.7]

NBL::Word::CAS Conditionally updates the content of a memory word.
See Section

NBL::Word::CASN Conditionally updates the contents of a collection of
memory words. See Section |3.4.9

26 CHAPTER 3. ATOMIC WORD OPERATIONS

NBL::Word::LL Reads the content of a memory word, and starts surveil-
lance for further updates. See Section|3.4.10

NBL::Word::VL Checks if the content of a memory word has been up-
dated since the start of surveillance. See Section [3.4.111

NBL::Word::SC Updates the content of a memory word only if the con-
tent has not been updated since the start of the surveillance. See

Section

3.1.3 Limitations in Functionality

All implementations do not support all operations. The following table
illustrates which operations that are supported by each implementa-
tion:

Flold 5 3
v |6|J|F N|¥f |5
WF | LF | WF | - - - -
LF
LF

Q

Ny
& & F
WF_ B WF | WF | WF

WF_CASN | WF | LF | LF
LF LL LF | LF | LF

LF | WF | WF | - - -
LF | LF - LF | LF | LF

3.2 Examples

3.2.1 C

NBLWordRoot =*word;
int items[4]={1,2,3,4};

void main (int argc, char **argv)
{
NBLWord =xhandle;

/+ Create a wait-free word object */
word = NBLWordCreateWF_B () ;

/* Initialize the memory words =*/
handle=NBLWordGetHandle (word) ;

NBLWordInit (handle, & (items[0])
NBLWordInit (handle, & (items[1])
NBLWordInit (handle, & (items([2])
NBLWordInit (handle, & (items[3])

/* Creating and running the threads ... %/

/* De—initialize the memory words =/

3.2. EXAMPLES

NBLWordDeinit (handle, & (items[0]))
NBLWordDeinit (handle, & (items[1]));
NBLWordDeinit (handle, & (items[2]));
NBLWordDeinit (handle, & (items[3]))

r

r

/* Freeing the memory that the word object used */
NBLWordFree (word) ;
word=NULL;

void Threadl ()

{
NBLWord *handle;
/* Get the local handle to the word object =/
handle=NBLWordGetHandle (word) ;

/* Atomically add the value 3 to items[3] x/
NBLWordAdd (handle, & (items[3]),3);

/+ Free the local handle to the word object =/
NBLWordFreeHandle (handle) ;

void Thread2 ()
{

int value;

NBLWord *handle;

/* Get the local handle to the word object =x/
handle=NBLWordGetHandle (word) ;

/* Read the value of items[3], i1.e. 4 or 7 =%/
value=NBLWordRead (handle, & (items[3]));

/* Free the local handle to the word object x/
NBLWordFreeHandle (handle) ;

void Thread3 ()

3.2.2 C++

NBL: :Word<int> *word;
int items([4]={1,2,3,4};

void main (int argc, char **argv)
{

/* Create a wait-free word object =*/

28 CHAPTER 3. ATOMIC WORD OPERATIONS

word = NBL::Word<int>::CreateWF_B() ;

/* Initialize the memory words =/
word->Init (& (items[0]),1)
word->Init (& (items[1]),2);
word->Init (& (items[2]),3);
word->Init (& (items[3]),4)

’

’

/* Creating and running the threads ... x/

/* De—-initialize the memory words =/
word->Deinit (& (items[0]));
word->Deinit (& (items[1]));
word->Deinit (& (items[2]));
word->Deinit (& (items[3]))

’

/* Freeing the memory that the word object used */
delete word;
word=NULL;

void Threadl ()

{
/+* Atomically add the value 3 to items[3] */
word->Add (& (items [3]),3);

void Thread2 ()

{
int value;
/* Read the value of items[3], i.e. 4 or 7 =*/
value=word->Read (handle, & (items[3]));

void Thread3 ()

3.3. CREATION 29

3.3 Creation

The following functions are used to create a new word object.

3.3.1 NBLWordCreateWF B

Creates a new instance of a word object using a wait-free implementa-
tion. The implementation supports basic operations, i.e. Read, Write,
Add, Swap, Op and CAS.

Syntax C

NBLWordRoot* NBLWordCreateWF_B (
)

Syntax C++

template class <>
static NBL::Word<int>* NBL::Word<int>::CreateWF_B(
)

Parameters

Return Values

If successful, the function returns a pointer to a new instance of a word
object. Otherwise, it returns NULL.

Remarks

The operations INIT and DEINIT are not necessary to use for affected
memory words in this implementation.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

30 CHAPTER 3. ATOMIC WORD OPERATIONS

3.3.2 NBLWordCreateWF_CASN

Creates a new instance of a word object using a wait-free implementa-
tion. The implementation supports basic operations as well as condi-
tional updates of a set of memory words, i.e. transactions. The imple-
mentation requires a reduced accuracy of values in each memory word
used, with 31 bits for actual use, i.e. it supports integers with values
ranging from -1073741824 to 1073741823. The supported operations
are Read, Write, Add, Swap, Op, CAS and CASN.

Syntax C

NBLWordRoot* NBLWordCreateWF_CASN (
int nrOfThreads,
int nrOfWords

)i
Syntax C++

template class <>

static NBL::Word<int>* NBL::Word<int>::CreateWF_CASN (
int nrOfThreads = 8,
int nrOfWords = 8

)i

Parameters

nrOfThreads
[in] The maximum number of concurrent threads that will ac-
cess the structure.

nrOfWords
[in] The maximum number of memory words that are used in

transaction instructions (i.e. CASN).
On-line Parameters
Return Values

If successful, the function returns a pointer to a new instance of a word
object. Otherwise, it returns NULL.

Remarks

The functions Init and Deinit must be used for each affected memory
word before vs. after any memory words are used in this implementa-
tion. Values outside of the allowed range inside of 31 bits of accuracy
will be truncated.

3.3. CREATION

31

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

32 CHAPTER 3. ATOMIC WORD OPERATIONS

3.3.3 NBLWordCreateLF LL

Creates a new instance of a word object using a lock-free implementa-
tion. The implementation supports basic operations as well as surveil-
lance of possible updates of memory words. The supported operations
are Read, Write, Add, Swap, Op, CAS, LL, VL and SC.

Syntax C

NBLWordRoot« NBLWordCreateLF_LL (
int nrOfNodes,
int nrOfVariables

)i
Syntax C++

template class <>

static NBL::Word<int>#% NBL::Word<int>::CreatelF_LL (
int nrOfVariables = 4,
int nrOfNodes = 1000

)i

Parameters

nrOfNodes
[in] The maximum number of memory blocks that can be

used for storing contents in the memory words. This num-
ber roughly matches the number of memory words for use:
nrOfNodes = n + N? x (1 + v) * 2 , where n=nrMemoryWords,
N=nrOfThreads, v=nrOfVariables

nrOfVariables
[in] The maximum number of surveillance variables that can

be used by each thread (i.e. handle).
On-line Parameters
Return Values

If successful, the function returns a pointer to a new instance of a word
object. Otherwise, it returns NULL.

Remarks

The functions Init and Deinit must be used for each affected memory
word before vs. after any memory words are used in this implementa-
tion.

3.3. CREATION

33

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

34 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4 Operations

3.4.1 NBLWordInit

Initializes a memory word for use with the word object.

Syntax C

int NBLWordInit (
NBLWord* handle,
void* address,
int value
)i
Syntax C++
template class <>
bool NBL::Word<int>::Init (
void* address,

int value

)i
Parameters

handle
[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.

value
[in] The initial content of the memory word.
Return Values

If successful, the memory word is initialized to the specified value, and
the function returns true. Otherwise, there is lack of remaining avail-
able resources for the purpose, and the function returns false.
Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

3.4. OPERATIONS

35

3.4.2 NBLWordDeinit

De-initializes a memory word after use with the word object.

Syntax C

void NBLWordDeinit (
NBLWord* handle,
void* address

)i

Syntax C++

template class <>

void NBL::Word<int>::Deinit (

voidx address
)i

Parameters

handle
[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.
Return Values
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

36 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.3 NBLWordRead

Reads the content of a memory word.

Syntax C

int NBLWordRead (
NBLWordx handle,
void* address

)i

Syntax C++

template class <>

int NBL::Word<int>::Read/

voidx address
)i

Parameters

handle
[in] A pointer to a local handle of a word object instance.

address

[in] The address of the memory word to access.
Return Values
The function returns the content of the memory word at the specified
address.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

3.4. OPERATIONS

37

3.4.4 NBLWordWrite

Writes a value to the content of a memory word.

Syntax C

void NBLWordWrite (
NBLWord* handle,
void* address,
int value
)
Syntax C++
template class <>
void NBL: :Word<int>::Write (
void* address,

int value

)i
Parameters

handle

[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.

value
[in] The value to be written to the memory word.
Return Values
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

38 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.5 NBLWordAdd

Adds a value to the content of a memory word.

Syntax C

int NBLWordAdd (
NBLWordx handle,
void* address,
int value
)
Syntax C++
template class <>
int NBL::Word<int>::Add(
void* address,

int value

)
Parameters

handle
[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.

value
[in] The value to be added to the content of the memory word.

Return Values
The function adds the value to the content of the memory word, and
returns the new written content.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

3.4. OPERATIONS 39

3.4.6 NBLWordSwap

Exchanges the content of a memory word.

Syntax C

int NBLWordSwap (
NBLWordx handle,
void* address,
int next
)
Syntax C++
template class <>
int NBL::Word<int>::Swap (
void* address,

int next
)i

Parameters

handle
[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.

next
[in] The new value of the memory word.

Return Values
The functions read the content of the memory word, writes the new
value to the memory word, and returns the old content.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

40 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.7 NBLWordOp

Updates the content of a memory word using a custom operation.

Syntax C

int NBLWordOp (
NBLWordx handle,
void* address,
int (xfn) (int old, int arg),
int value

)i
Syntax C++

template class <>

int NBL::Word<int>::0p (
void* address,
int (xfn) (int old, int arg),
int value

)i
Parameters

handle
[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.

m
[in] The custom function to apply for the content of the memory
word.

value
[in] The value to be passed as second argument to the custom
function.

Return Values

The content of the memory word will be passed as first argument to the
custom function. The result of the custom function will be written to
the memory word, which written content will also be returned by this
function.

Remarks

As the specified arithmetic function may be called several times due to
retried attempts of updating, it must not cause any side effects.

3.4. OPERATIONS

41

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

42 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.8 NBLWordCAS

Conditionally updates the content of a memory word

Syntax C

int NBLWordCAS (
NBLWord* handle,
void* address,
int old
int next

)i
Syntax C++

template class <>

bool NBL::Word<int>::CAS (
void* address,
int old
int next

)i

Parameters

handle
[in] A pointer to a local handle of a word object instance.

address
[in] The address of the memory word to access.

old
[in] The awaited value of the memory word.

next
[in] The new value of the memory word.

Return Values

If the content of the specified memory word exactly match the specified
awaited value, the contents of the memory word is updated with the
specified new value, and the function returns true. Otherwise, the
function returns false.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

3.4. OPERATIONS

43

See Also

44 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.9 NBLWordCASN

Conditionally updates the contents of a collection of memory words.

Syntax C

int NBLWordCASN (
NBLWordx handle,
int n,
void* addresses]|[],
int olds][],
int nexts|[]

)i
Syntax C++

template class <>
bool NBL::Word<int>: :CASN (
int n,
void* addresses|[],
int olds[],
int nexts|[]

)i
Parameters

handle
[in] A pointer to a local handle of a word object instance.

n
[in] The number of memory words to conditionally update.
addresses
[in] An array containing the address for each specific memory
word to access.
olds
[in] An array containing the awaited values of each specific
memory word.
nexts
[in] An array containing the new values of each specific memory
word.

Return Values

If the contents of all of the specified memory words exactly match the
specified awaited values, the contents of the memory words are up-
dated with the specified new values, and the function returns true.

3.4. OPERATIONS 45

Otherwise if any memory word does not match the specified awaited
value, the function returns false.

Remarks

Although not required, for performance reasons it is desirable that the
specified memory addresses are sorted in ascending order, i.e. lowest
addresses first.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

46 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.10 NBLWordLL

Reads the content of a memory word, and starts surveillance for further
updates.

Syntax C

int NBLWordLL (
NBLWordx handle,
int nr,
voidx address
)i
Syntax C++
template class <>
int NBL: :Word<int>::LL(
int nr,

voidx address

)i
Parameters

handle
[in] A pointer to a local handle of a word object instance.

nr
[in] Index of the surveillance variable of interest.

address

[in] The address of the memory word to access.
Return Values
The functions return the content of the memory word at the specified
address and starts surveillance through the specified variable.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

3.4. OPERATIONS 47

3.4.11 NBLWordVL

Checks if the content of a memory word has been updated since the
start of surveillance.

Syntax C

int NBLWordVL (
NBLWordx handle,
int nr,
voidx address
)i
Syntax C++
template class <>
bool NBL: :Word<int>: :VL(
int nr,

voidx address

)i
Parameters

handle
[in] A pointer to a local handle of a word object instance.

nr
[in] Index of the surveillance variable of interest.

address
[in] The address of the memory word to access.
Return Values

If the memory word has not been updated since the start of the surveil-
lance through the specified variable, the function returns true. Other-
wise, the function returns false.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

48 CHAPTER 3. ATOMIC WORD OPERATIONS

3.4.12 NBLWordSC

Updates the content of a memory word only if the content has not been
updated since the start of the surveillance.

Syntax C

int NBLWordScC (
NBLWord* handle,
int nr,
void* address,
int value

)i

Syntax C++

template class <>

bool NBL::Word<int>::SC(
int nr,
void* address,
int value

)i
Parameters

handle
[in] A pointer to a local handle of a word object instance.

nr
[in] Index of the surveillance variable of interest.

address
[in] The address of the memory word to access.

value
[in] The value to conditionally write to the memory word.

Return Values

If the memory word has not been updated since the start of the surveil-
lance through the specified variable, the value is written to the memory
word and the function returns true. Otherwise, the function returns
false.

3.4. OPERATIONS

49

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

50

CHAPTER 3. ATOMIC WORD OPERATIONS

Chapter 4

Memory Management

This is a collection of functions accessing several implementations of
memory management schemes, i.e. handle memory allocation and
garbage collection facilities.

e Three Lock-Free implementations offering strong garbage collec-
tion, limited number of local references, and bounded memory
usage.

e Three Lock-Free implementations offering strong garbage collec-
tion, unlimited number of local references, and unbounded mem-
ory usage.

e Three Lock-Free implementations offering medium garbage col-
lection, limited number of local references, and bounded memory
usage.

e Three Lock-Free implementations offering weak garbage collec-
tion, limited number of local references, and bounded memory
usage.

e A Wait-Free implementation offering strong garbage collection, un-
limited number of local references, and unbounded memory us-
age.

The terms bounded versus unbounded memory usage just refers
to the amount of memory needed for a certain number of elements in
the targeted data structure, i.e. with bounded memory usage it can
be determined in advance exactly how much memory is needed for a
certain number of elements. The data structures are still fully dynamic
and can contain as many elements as the size of the systems memory
permits.

51

52 CHAPTER 4. MEMORY MANAGEMENT

4.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

4.1.1 C

NBLMemoryCreateLF_SLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section [4.2.1]

NBLMemoryCreateLF_CSLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBLMemoryCreateLF HSLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting any-sized
blocks. See Section

NBLMemoryCreateLF SUU Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section

NBLMemoryCreateLF_CSUU Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBLMemoryCreateLF HSUU Creates a new instance of a memory man-
ager object using a lock-free implementation supporting any-sized
blocks. See Section [4.2.6]

NBLMemoryCreateLF_MLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section

NBLMemoryCreateLF_ CMLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBLMemoryCreateLF HMLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting any-sized
blocks. See Section

NBLMemoryCreateLF_ WLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section

NBLMemoryCreateLF_ CWLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section [4.2.11]

4.1. OVERVIEW 53

NBLMemoryCreateLF HWLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting any-sized
blocks. See Section [4.2.12]

NBLMemoryCreateWF_SUU Creates a new instance of a memory man-
ager object using a wait-free implementation supporting fixed-size
blocks. See Section

NBLMemoryAllocBlock Allocates a new memory block of fixed size.
See Section [4.3.1]

NBLMemoryAllocClass Allocates a new memory block of specified size-
class. See Section

NBLMemoryAllocSize Allocates a new memory block of arbitrary size.
See Section [4.3.3]

NBLMemoryDeleteBlock Frees a memory block when possible. See
Section [4.3.4].

NBLMemoryDeRefLink Dereferences a shared memory pointer. See
Section [4.3.5]

NBLMemoryCopyRef Copies a safe reference. See Section [4.3.6]
NBLMemoryReleaseRef Releases a safe reference. See Section [4.3.7}

NBLMemoryStoreRef Stores a reference in a shared memory pointer.
See Section [4.3.8

NBLMemoryCASRef Atomically updates a reference in a shared mem-
ory pointer. See Section

4.1.2 C++

namespace NBL {
template <typename T> class Memory {

// Constructors

static Memory<T>* CreateLF_SLB(int nrOfBlocks, int
nrLocalRefs);

static Memory<T>* CreateLF_SUU(int nrOfBlocks) ;

static Memory<T>* CreateLF_MLB(int nrOfBlocks, int
nrLocalRefs);

static Memory<T>* CreateLF_WLB (int nrOfBlocks, int
nrLocalRefs) ;

static Memory<T>x CreateWF_SUU(int nrOfThreads, int
nrOfBlocks) ;

static Memory<T>* CreatelLF_CSLB (NBLMemorySizeClass x
sizeClasses, int nrSizeClasses, int nrLocalRefs);

54 CHAPTER 4. MEMORY MANAGEMENT

static Memory<T>* CreatelF_CSUU (NBLMemorySizeClass x
sizeClasses, int nrSizeClasses);

static Memory<T>* CreateLF_CMLB (NBLMemorySizeClass x
sizeClasses, int nrSizeClasses, int nrLocalRefs);

static Memory<T>* CreateLF_CWLB (NBLMemorySizeClass x*
sizeClasses, int nrSizeClasses, int nrLocalRefs);

static Memory<T>* CreatelF_HSLB (int heapSize, int
nrLocalRefs);

static Memory<T>x CreateLF_HSUU (int heapSize);

static Memory<T>* CreatelF_HMLB (int heapSize, int
nrLocalRefs);

static Memory<T>x CreateLF_HWLB (int heapSize, int
nrLocalRefs) ;

// Operations

T+ AllocBlock () ;

void DelBlock (T block);

T+ DeRefLink (T+% 1link);

void CopyRef (T block);

void ReleaseRef (Tx \&block);

void StoreRef (Txx link, Tx* block);

bool CASRef (Tx* link, Tx old, Tx block);

bi
}i
NBL::Memory::CreateLF SLB Creates a new instance of a memory man-

ager object using a lock-free implementation supporting fixed-size
blocks. See Section

NBL::Memory::CreateLF CSLB Creates a new instance of a memory
manager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBL::Memory::CreateLF_ HSLB Creates a new instance of a memory
manager object using a lock-free implementation supporting any-
sized blocks. See Section

NBL::Memory::CreateLF SUU Creates a new instance of a memory
manager object using a lock-free implementation supporting fixed-
size blocks. See Section

NBL::Memory::CreateLF_CSUU Creates a new instance of a memory
manager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBL::Memory::CreateLF HSUU Creates a new instance of a memory
manager object using a lock-free implementation supporting any-
sized blocks. See Section [4.2.6

NBL::Memory::CreateLF_ MLB Creates a new instance of a memory
manager object using a lock-free implementation supporting fixed-
size blocks. See Section [4.2.7]

4.1. OVERVIEW 55

NBL::Memory::CreateLF_ CMLB Creates a new instance of a memory
manager object using a lock-free implementation supporting multi-
sized blocks. See Section [4.2.8

NBL::Memory::CreateLF HMLB Creates a new instance of a memory
manager object using a lock-free implementation supporting any-
sized blocks. See Section

NBL::Memory::CreateLF WLB Creates a new instance of a memory
manager object using a lock-free implementation supporting fixed-
size blocks. See Section

NBL::Memory::CreateLF_ CWLB Creates a new instance of a memory
manager object using a lock-free implementation supporting multi-
sized blocks. See Section [4.2. 111

NBL::Memory::CreateLF HWLB Creates a new instance of a memory
manager object using a lock-free implementation supporting any-
sized blocks. See Section |4.2.12

NBL::Memory::CreateWF _SUU Creates a new instance of a memory
manager object using a wait-free implementation supporting fixed-
size blocks. See Section [4.2.13

NBL::Memory::AllocBlock Allocates a new memory block of fixed size.
See Section [4.3.1]

NBL::Memory::AllocClass Allocates a new memory block of specified
size-class. See Section [4.3.2]

NBL::Memory::AllocSize Allocates a new memory block of arbitrary
size. See Section [4.3.3]

NBL::Memory::DeleteBlock Frees a memory block when possible. See
Section

NBL::Memory::DeRefLink Dereferences a shared memory pointer. See
Section

NBL::Memory::CopyRef Copies a safe reference. See Section 4.3.6
NBL::Memory::ReleaseRef Releases a safe reference. See Section[4.3.7]

NBL::Memory::StoreRef Stores a reference in a shared memory pointer.
See Section [4.3.8

NBL::Memory::CASRef Atomically updates a reference in a shared mem-
ory pointer. See Section

56 CHAPTER 4. MEMORY MANAGEMENT

4.2 Creation

The following functions are used to create a new memory manager.

NBLMemoryCreateLF SLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section

NBLMemoryCreateLF CSLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBLMemoryCreateLF HSLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting any-sized
blocks. See Section [4.2.3]

NBLMemoryCreateLF SUU Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section

NBLMemoryCreateLF_CSUU Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBLMemoryCreateLF_ HSUU Creates a new instance of a memory man-
ager object using a lock-free implementation supporting any-sized
blocks. See Section

NBLMemoryCreateLF MLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section [4.2.7]

NBLMemoryCreateLF CMLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section

NBLMemoryCreateLF_ HMLB Creates a new instance of a memory man-

ager object using a lock-free implementation supporting any-sized
blocks. See Section

NBLMemoryCreateLF_ WLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting fixed-size
blocks. See Section [4.2.10

NBLMemoryCreateLF CWLB Creates a new instance of a memory man-
ager object using a lock-free implementation supporting multi-
sized blocks. See Section[4.2.11

NBLMemoryCreateLF HWLB Creates a new instance of a memory man-

ager object using a lock-free implementation supporting any-sized
blocks. See Section [4.2.12]

4.2. CREATION 57

NBLMemoryCreateWF_SUU Creates a new instance of a memory man-
ager object using a wait-free implementation supporting fixed-size
blocks. See Section [4.2.13]

4.2.1 NBLMemoryCreateLF _SLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting fixed-size blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is limited. The number of logically deleted
but still not reclaimed memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_SLB (
int nrOfBlocks,
int sizeOfBlocks,
int nrLocalRefs

)

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_SLB (
int nrOfBlocks = 1000,
int nrLocalRefs = 8

)i
Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used.

sizeOfBlocks
[in] The size in bytes of each memory block.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD SIZE
PARAM_MEM FIXED_ALLOC

58 CHAPTER 4. MEMORY MANAGEMENT

PARAM_MEM_CB_RELEASE_REFS
PARAM_MEM_CB_REDUCE_CHAIN
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section [2.4.1

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references
that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void *block);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

The implementation also supports a user-defined callback function
to be called whenever the memory manager is about to free a memory
block which may hinder other memory blocks from being freed. The
purpose of this function is to make sure that all safe references that is
stored in links within this memory block only references other memory
blocks that are not about to being freed. The syntax of this callback
function is as follows:

void NBLMemoryReduceChainCB (void xargl, void xblock);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 59

4.2.2 NBLMemoryCreateLF CSLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting multi-sized blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is limited. The number of logically deleted
but still not reclaimed memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_CSLB (
NBLMemorySizeClass *sizeClasses,
int nrSizeClasses,
int nrLocalRefs

)i
Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_CSLB (
NBLMemorySizeClass *sizeClasses,
int nrSizeClasses,
int nrLocalRefs = 8

)i

Parameters

sizeClasses
[in] Definitions of the size classes to use.

nrSizeClasses
[in] The number of size classes to use.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD SIZE
PARAM_MEM FIXED_ALLOC
PARAM_MEM_CB_RELEASE_REFS
PARAM_MEM_CB_REDUCE_CHAIN
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section 2.4.1

60 CHAPTER 4. MEMORY MANAGEMENT

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references
that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void *block);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

The implementation also supports a user-defined callback function
to be called whenever the memory manager is about to free a memory
block which may hinder other memory blocks from being freed. The
purpose of this function is to make sure that all safe references that is
stored in links within this memory block only references other memory
blocks that are not about to being freed. The syntax of this callback
function is as follows:

void NBLMemoryReduceChainCB (void xargl, void *block);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 61

4.2.3 NBLMemoryCreateLF HSLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting any-sized blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is limited. The number of logically deleted
but still not reclaimed memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_HSLB (
int heapSize,
int nrLocalRefs

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_HSLB (
int heapSize,
int nrLocalRefs = 8

)i

Parameters

heapSize
[in] The number of bytes to use for the heap.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD SIZE
PARAM_MEM_FIXED_ALLOC
PARAM_MEM_CB_RELEASE_REFS
PARAM_MEM_CB_REDUCE_CHAIN
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

62 CHAPTER 4. MEMORY MANAGEMENT

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references
that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void xblock);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

The implementation also supports a user-defined callback function
to be called whenever the memory manager is about to free a memory
block which may hinder other memory blocks from being freed. The
purpose of this function is to make sure that all safe references that is
stored in links within this memory block only references other memory
blocks that are not about to being freed. The syntax of this callback
function is as follows:

void NBLMemoryReduceChainCB (void xargl, void *block);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 63

4.2.4 NBLMemoryCreateLF SUU

Creates a new instance of a memory manager object using a lock-free
implementation supporting fixed-size blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is unlimited. The number of logically
deleted but still not reclaimed memory blocks is unbounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_SUU (
int nrOfBlocks,
int sizeOfBlocks

)i

Syntax C++
template <typename T> class
static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_SUU (

int nrOfBlocks = 1000
)i

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used.

sizeOfBlocks
[in] The size in bytes of each memory block.

On-line Parameters

PARAM_MEM_OVERHEAD SIZE
PARAM_MEM FIXED_ALLOC
PARAM_MEM_CB_RELEASE_REFS
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section [2.4.1

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

64 CHAPTER 4. MEMORY MANAGEMENT

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references
that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void xblock);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 65

4.2.5 NBLMemoryCreateLF CSUU

Creates a new instance of a memory manager object using a lock-free
implementation supporting multi-sized blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is unlimited. The number of logically
deleted but still not reclaimed memory blocks is unbounded.

Syntax C

NBLMemoryRoot+* NBLMemoryCreateLF_CSUU (
NBLMemorySizeClass *sizeClasses,
int nrSizeClasses

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_CSUU (
NBLMemorySizeClass *sizeClasses,

int nrSizeClasses

)i
Parameters

sizeClasses
[in] Definitions of the size classes to use.

nrSizeClasses
[in] The number of size classes to use.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM_FIXED_ALLOC
PARAM_MEM _CB_RELEASE _REFS
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section [2.4.1

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

66 CHAPTER 4. MEMORY MANAGEMENT

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references
that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void xblock);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 67

4.2.6 NBLMemoryCreateLF HSUU

Creates a new instance of a memory manager object using a lock-free
implementation supporting any-sized blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is unlimited. The number of logically
deleted but still not reclaimed memory blocks is unbounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_HSUU (
int heapSize
)i

Syntax C++
template <typename T> class
static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_HSUU (

int heapSize
)i

Parameters

heapSize
[in] The number of bytes to use for the heap.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM FIXED_ALLOC
PARAM_MEM_CB_RELEASE _REFS
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section [2.4.1

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references

68 CHAPTER 4. MEMORY MANAGEMENT

that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void xblock);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 69

4.2.7 NBLMemoryCreateLF MLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting fixed-size blocks.

The implementation offers medium strong garbage collection facili-
ties and can thus only under certain circumstances allow safe derefer-
encing of links that are within memory blocks which has been logically
deleted. The number of local safe references that can be used per han-
dle is limited. The number of logically deleted but still not reclaimed
memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_MLB (
int nrOfBlocks,
int sizeOfBlocks,
int nrLocalRefs

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_MLB (
int nrOfBlocks = 1000,

int nrLocalRefs = 8

)i
Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used.

sizeOfBlocks
[in] The size in bytes of each memory block.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM FIXED_ALLOC

For detailed parameter descriptions see Section [2.4.1

70 CHAPTER 4. MEMORY MANAGEMENT

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 71

4.2.8 NBLMemoryCreateLF CMLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting multi-sized blocks.

The implementation offers medium strong garbage collection facili-
ties and can thus only under certain circumstances allow safe derefer-
encing of links that are within memory blocks which has been logically
deleted. The number of local safe references that can be used per han-
dle is limited. The number of logically deleted but still not reclaimed
memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_CMLB (
NBLMemorySizeClass *sizeClasses,
int nrSizeClasses,
int nrLocalRefs

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_CMLB (
NBLMemorySizeClass *sizeClasses,
int nrSizeClasses,
int nrLocalRefs = 8

)i

Parameters

sizeClasses
[in] Definitions of the size classes to use.

nrSizeClasses
[in] The number of size classes to use.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM_FIXED_ALLOC

For detailed parameter descriptions see Section [2.4.1

72 CHAPTER 4. MEMORY MANAGEMENT

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 73

4.2.9 NBLMemoryCreateLF HMLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting any-sized blocks.

The implementation offers medium strong garbage collection facili-
ties and can thus only under certain circumstances allow safe derefer-
encing of links that are within memory blocks which has been logically
deleted. The number of local safe references that can be used per han-
dle is limited. The number of logically deleted but still not reclaimed
memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_HMLB (
int heapSize,
int nrLocalRefs

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_HMLB (
int heapSize,

int nrLocalRefs = 8
)

Parameters

heapSize
[in] The number of bytes to use for the heap.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM FIXED_ALLOC

For detailed parameter descriptions see Section [2.4.1

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

74 CHAPTER 4. MEMORY MANAGEMENT

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 75

4.2.10 NBLMemoryCreateLF WLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting fixed-size blocks.

The implementation offers weak garbage collection facilities and thus
do not allow safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is limited. The number of logically deleted
but still not reclaimed memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_WLB (
int nrOfBlocks,
int sizeOfBlocks,
int nrLocalRefs

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_WLB (
int nrOfBlocks = 1000,

int nrLocalRefs = 8
)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used.

sizeOfBlocks
[in] The size in bytes of each memory block.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM_FIXED_ALLOC

For detailed parameter descriptions see Section [2.4.1

76 CHAPTER 4. MEMORY MANAGEMENT

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 77

4.2.11 NBLMemoryCreateLF CWLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting multi-sized blocks.

The implementation offers weak garbage collection facilities and thus
do not allow safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is limited. The number of logically deleted
but still not reclaimed memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_CWLB (
NBLMemorySizeClass *sizeClasses,
int nrSizeClasses,
int nrLocalRefs

)i
Syntax C++

template <typename T> class

static NBL::Memory<T>% NBL::Memory<T>::CreateLF_CWLB (
NBLMemorySizeClass xsizeClasses,
int nrSizeClasses,
int nrLocalRefs = 8

)i
Parameters

sizeClasses
[in] Definitions of the size classes to use.

nrSizeClasses
[in] The number of size classes to use.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD SIZE
PARAM_MEM_FIXED_ALLOC

For detailed parameter descriptions see Section 2.4.1

78 CHAPTER 4. MEMORY MANAGEMENT

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 79

4.2.12 NBLMemoryCreateLF HWLB

Creates a new instance of a memory manager object using a lock-free
implementation supporting any-sized blocks.

The implementation offers weak garbage collection facilities and thus
do not allow safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is limited. The number of logically deleted
but still not reclaimed memory blocks is bounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateLF_HWLB (
int heapSize,
int nrLocalRefs

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateLF_HWLB (
int heapSize,

int nrLocalRefs = 8
)i

Parameters

heapSize
[in] The number of bytes to use for the heap.

nrLocalRefs
[in] The maximum number of safe local references that can be used
per handle.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM _FIXED_ALLOC

For detailed parameter descriptions see Section [2.4.1

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

80 CHAPTER 4. MEMORY MANAGEMENT

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.2. CREATION 81

4.2.13 NBLMemoryCreateWF_SUU

Creates a new instance of a memory manager object using a wait-free
implementation supporting fixed-size blocks.

The implementation offers strong garbage collection facilities and
thus allows safe dereferencing of links that are within memory blocks
which has been logically deleted. The number of safe local references
that can be used per handle is unlimited. The number of logically
deleted but still not reclaimed memory blocks is unbounded.

Syntax C

NBLMemoryRoot* NBLMemoryCreateWF_SUU (
int nrOfThreads,
int nrOfBlocks,
int sizeOfBlocks

)i

Syntax C++

template <typename T> class

static NBL: :Memory<T>% NBL::Memory<T>::CreateWF_SUU (
int nrOfThreads = 16,
int nrOfBlocks = 1000,

)i

Parameters

nrOfThreads
[in] The maximum number of concurrent threads that will ac-

cess the structure.
nrOfBlocks

[in] The maximum number of memory blocks that can be used.

sizeOfBlocks
[in] The size in bytes of each memory block.

On-line Parameters

PARAM_MEM_OVERHEAD_SIZE
PARAM_MEM_FIXED_ALLOC
PARAM_MEM_CB_RELEASE REFS
PARAM_MEM_CB_ARG1

For detailed parameter descriptions see Section [2.4.1

82 CHAPTER 4. MEMORY MANAGEMENT

Return Values

If successful, the function returns a pointer to a new instance of a
memory manager object. Otherwise, it returns NULL.

Remarks

The implementation supports a user-defined callback function to be
called whenever the memory manager is about to free a memory block.
The purpose of this function is to release all recursive safe references
that are stored in links within this memory block. The syntax of this
callback function is as follows:

void NBLMemoryReleaseRefsCB (void xargl, void *block);

where argl is a fixed user-defined argument and block is the mem-
ory block of interest.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.3. OPERATIONS 83

4.3 Operations
4.3.1 NBLMemoryAllocBlock

Allocates a new memory block.

Syntax C

void x NBLMemoryAllocBlock (
NBLMemory* handle

)i
Syntax C++
template <typename T> class

T+ NBL: :Memory<T>::AllocBlock (
)

Parameters

handle
[in] A pointer to a local handle of a memory manager object instance.

Return Values

If successful, the function returns a safe pointer to a new allocated
memory block. Otherwise the memory pool of the memory manager
was empty, i.e. out of memory.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

84 CHAPTER 4. MEMORY MANAGEMENT

4.3.2 NBLMemoryAllocClass

Allocates a new memory block of selected size-class.

Syntax C

void x NBLMemoryAllocClass (
NBLMemory* handle,
int sizeClass

)i

Syntax C++

template <typename T> class

Tx NBL::Memory<T>::AllocClass (

int sizeClass
)i

Parameters

handle
[in] A pointer to a local handle of a memory manager object instance.

Return Values

If successful, the function returns a safe pointer to a new allocated
memory block. Otherwise the memory pool of the memory manager
was empty, i.e. out of memory.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.3. OPERATIONS

85

4.3.3 NBLMemoryAllocSize

Allocates a new memory block of arbitrary size.

Syntax C

void x NBLMemoryAllocSize (
NBLMemory* handle,
int size
)i
Syntax C++
template <typename T> class
T+ NBL: :Memory<T>::AllocSize (

int size

)i
Parameters

handle

[in] A pointer to a local handle of a memory manager object instance.

Return Values

If successful, the function returns a safe pointer to a new allocated
memory block. Otherwise the memory pool of the memory manager

was empty, i.e. out of memory.

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

86 CHAPTER 4. MEMORY MANAGEMENT

4.3.4 NBLMemoryDeleteBlock

Frees a memory block when possible, i.e. when no threads or other
blocks keep safe references to it.

Syntax C

void NBLMemoryDeleteBlock (
NBLMemoryx handle,
voidx block

)i

Syntax C++
template <typename T> class
void NBL: :Memory<T>::DeleteBlock (

T+ block
)i

Parameters

handle
[in] A pointer to a local handle of a memory manager object instance.

block
[in] Pointer to the block which memory should be freed.

Return Values

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.3. OPERATIONS 87

4.3.5 NBLMemoryDeRefLink

Dereferences a shared memory pointer.

Syntax C

void* NBLMemoryDeRefLink (
NBLMemory* handle,
void*x link

)i
Syntax C++

template <typename T> class

T NBL: :Memory<T>::DeRefLink (
T+x* link

)i

Parameters

handle
[in] A pointer to a local handle of a memory manager object instance.

link
[in] Pointer to a shared link which pointer to a memory block
should be de-referenced.

Return Values

If successful, the function returns a safe pointer to the memory block
pointed to by the shared link. Otherwise the link was invalid, i.e. NULL.

Remarks

Depending on the implementation chosen, this function does or does
not allow safe dereferencing of links that are within memory blocks
which has been logically deleted.

The safe references obtained are local and can thus not be directly
shared among threads. To share a safe reference this has to be written
to a link and be correspondingly de-referenced.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

88 CHAPTER 4. MEMORY MANAGEMENT

See Also

NBLMemoryCopyRef Creates another safe reference to the same mem-

ory block. See Section[4.3.6,

NBLMemoryReleaseRef Releases a safe reference when it is no longer
needed. See Section[4.3.7.

4.3. OPERATIONS 89

4.3.6 NBLMemoryCopyRef

Copies a safe reference.

Syntax C

voidx NBLMemoryCopyRef (
NBLMemory* handle,
voidx block

)i

Syntax C++
template <typename T> class
T+ NBL: :Memory<T>: :CopyRef (

T+ block
)i

Parameters

handle
[in] A pointer to a local handle of a memory manager object instance.

block
[in] The safe reference which should be copied.

Return Values

If successful, the function returns a new safe pointer to a memory
block. Otherwise it was not possible to create a new reference to the
memory block, or the pointer was invalid, i.e. NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

90 CHAPTER 4. MEMORY MANAGEMENT

4.3.7 NBLMemoryReleaseRef

Releases a safe reference to a memory block.

Syntax C

void NBLMemoryReleaseRef (
NBLMemoryx* handle,
void* block

)i

Syntax C++
template <typename T> class
void NBL: :Memory<T>::ReleaseRef (

T+ \&block
)i

Parameters

handle
[in] A pointer to a local handle of a memory manager object instance.

block
[in] The safe reference which should be released.

Return Values

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

4.3. OPERATIONS 91

4.3.8 NBLMemoryStoreRef

Stores a reference to a memory block in a shared memory pointer.

Syntax C

void NBLMemoryStoreRef (
NBLMemory* handle,
void*x link,
void* block
)
Syntax C++
template <typename T> class
void NBL: :Memory<T>::StoreRef (
Tx* link,

Tx block
)i

Parameters
handle

[in] A pointer to a local handle of a memory manager object instance.

link
[in] Pointer to a shared link which pointer to a memory block should be updated.

block
[in] A safe reference to a memory block.

Return Values
Remarks

Before first usage the corresponding link should have been initiated
with NULL.

There must not be any possibility of concurrent updates to the cor-
responding link at the time this function is called.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

92 CHAPTER 4. MEMORY MANAGEMENT

4.3.9 NBLMemoryCASRef

Atomically updates a reference in a shared memory pointer.

Syntax C

int NBLMemoryCASRef (
NBLMemory* handle,
void*xx link,
voidx old,
void* new

)i
Syntax C++

template <typename T> class
bool NBL: :Memory<T>::CASRef (
T+x* link,
T+ old,
Tx new

)
Parameters
handle

[in] A pointer to a local handle of a memory manager object instance.

link
[in] Pointer to a shared link which pointer to a memory block should be updated.

old
[in] A safe reference to a memory block.

new
[in] A safe reference to a memory block.

Return Values

If the link was pointing to the old reference at the time of call, the link
is atomically updated to point to the new reference and the functions
returns true. Otherwise, the function returns false.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

4.3. OPERATIONS

93

See Also

94

CHAPTER 4. MEMORY MANAGEMENT

Chapter 5

Shared Stack

The Stack abstract data type is a collection of items in which only the
most recently added item may be removed. The latest added item is
at the top. Basic operations are Push (add to the top) and Pop (remove
from the top). Pop returns the item removed. The data structure is also
known as a "last-in, first-out” or LIFO buffer.

The implementations available of a shared stack are:

e A Lock-Free implementation offering bounded memory usage.
¢ A Lock-Free implementation offering unbounded memory usage.

e A Lock-Based implementation.

All of the available implementations of a shared stack offers the
same high-level semantics.

Definition 1 We denote with Q, the abstract state of a stack at the time
t. Qi = [v1,...,v,] is viewed as an list of values v, where |Q;| > 0. The op-
erations that can be performed on the stack are Push, and Pop. The time
t; is defined as the time just before the operation of interest takes place,
and the time t- is defined as the time just after the same operation takes
place. In the following expressions that define the high-level semantics of
our operations, the syntaxis S; : Oy, .52, where S; is the conditional state
before the operation Oy, and S, is the resulting state after performing the
corresponding operation:

Q¢, : Push(vy),Q¢, = [v1] + Qy, (5.1)
Qtl = @ : POp() = J—a Qt2 = @ (52)
Qi, = [v1] + Q1 : Pop() = v1,Qs, = Q1 (5.3)

95

96 CHAPTER 5. SHARED STACK

The detailed semantics of these operations are described in the re-
spective detailed description of each individual operation.

5.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

5.1.1 C

NBLStackCreateLF B Creates a new instance of a stack object using
a lock-free implementation. See Section [5.3.1

NBLStackCreateLF_U Creates a new instance of a stack object using
a lock-free implementation. See Section

NBLStackCreateLB Creates a new instance of a stack object using a
lock-based implementation. See Section

NBLStackPush Pushes a new item on the stack. See Section
NBLStackPop Pops an item from the stack. See Section [5.4.2

5.1.2 C++

namespace NBL {
template <typename T> class Stack {
// Constructors
static Stack<T>* CreatelF_B(int nrOfBlocks);
static Stack<T>* CreatelLF_U(int nrOfBlocks) ;
static Stack<T>* CreateLB();
// Operations
bool Push (T xitem);
T *Pop();
}i
}i

NBL::Stack::CreateLF B Creates a new instance of a stack object us-
ing a lock-free implementation. See Section [5.3.1]

NBL::Stack::CreateLF U Creates a new instance of a stack object us-
ing a lock-free implementation. See Section

NBL::Stack::CreateLB Creates a new instance of a stack object using
a lock-based implementation. See Section

NBL::Stack::Push Pushes a new item on the stack. See Section [5.4.1]
NBL::Stack::Pop Pops an item from the stack. See Section [5.4.2]

5.2. EXAMPLES 97

5.2 Examples

5.2.1 C

NBLStackRoot =stack;
int items([4]1={1,2,3,4};

void main (int argc, char **argv)
{
/+ Create a lock-free stack data object, with maximum space
for appr. 100 items =/
stack = NBLStackCreateLF_B(100);

/+* Creating and running the threads ... x/

/+ Freeing the memory that the stack used */
NBLStackFree (stack) ;
stack=NULL;

void Threadl ()

{
NBLStack xhandle;
/* Get the local handle to the shared stack =/
handle=NBLStackGetHandle (stack) ;

/* Push an item on the stack, i.e. pushing items[3] x/
NBLStackPush (handle, & (items[3]));

/* Free the local handle to the shared stack =/
NBLStackFreeHandle (handle) ;

void Thread?2 ()
{
int *xitem;
NBLStack xhandle;
/* Get the local handle to the shared stack =/
handle=NBLStackGetHandle (stack) ;

/* Push another item on the stack, i.e. pushing items[2] =/
NBLStackPush (handle, & (items[2]));

/* Poping an item back from the stack i.e. we should get a
pointer to items[2] or items[3] depending on which thread
was the fastest x/

item = NBLStackPop (handle);

98 CHAPTER 5. SHARED STACK

/* Free the local handle to the shared stack =*/
NBLStackFreeHandle (handle) ;

void Thread3 ()

5.2.2 C++

NBLStack<int> =xstack;
int items[4]={1,2,3,4};

void main (int argc, char xxargv)

{

/* Create a lock-free stack data object, with maximum space
for appr. 100 items «*/
stack = NBL::Stack<int>::CreatelLF_B(100);

/* Creating and running the threads ... %/

/* Freeing the memory that the stack used x*/
delete stack;
stack=NULL;

void Threadl ()
{

/* Push an item on the stack, i.e. pushing items[3] */
stack->Push (& (items[3]));

void Thread?2 ()
{

int *item;

/* Push another item on the stack, i.e. pushing items[2] =/
stack->Push (& (items[2]));

/* Poping an item back from the stack i.e. we should get a
pointer to items[2] or items[3] depending on which thread
was the fastest x/

item = stack->Pop();

void Thread3 ()

5.2. EXAMPLES

99

100 CHAPTER 5. SHARED STACK

5.3 Creation

The following functions are used to create a new stack shared data
structure.

NBLStackCreateLF B Creates a new instance of a stack object using
a lock-free implementation. See Section

NBLStackCreateLF U Creates a new instance of a stack object using
a lock-free implementation. See Section

NBLStackCreateLB Creates a new instance of a stack object using a
lock-based implementation. See Section

5.3. CREATION 101

5.3.1 NBLStackCreateLF B

Creates a new instance of a stack object using a lock-free implementa-
tion.

The amount of memory occupied at any moment in time for storing
the items is bounded.

Syntax C

NBLStackRoot* NBLStackCreatelLF_ B(
int nrOfBlocks
)i

Syntax C++
template <typename T> class
static NBL::Stack<T>x NBL::Stack<T>::CreateLF_B(

int nrOfBlocks = 1000
)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used
for the implementation of the stack. This measures approxi-
mately the number of items that can be stored into the stack:
nrOfBlocks = n + N? x 2 + N , where n=nrOfltems,
N=nrOfThreads

On-line Parameters

PARAM BACK_OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a stack
object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

102 CHAPTER 5. SHARED STACK

See Also

5.3. CREATION 103

5.3.2 NBLStackCreateLF_U

Creates a new instance of a stack object using a lock-free implementa-
tion.

The amount of memory occupied at any moment in time for storing
the items is unbounded.

Syntax C

NBLStackRoot NBLStackCreatelLF_U (
int nrOfBlocks
)i
Syntax C++
template <typename T> class
static NBL::Stack<T>x NBL::Stack<T>::CreateLF_U (

int nrOfBlocks = 1000
)i

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used
for the implementation of the stack. This measures approxi-
mately the number of items that can be stored into the stack:
nrOfBlocks =n + N x 2 , where n=nrOfltems, N=nrOfThreads
On-line Parameters

PARAM _BACK _OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a stack
object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

104 CHAPTER 5. SHARED STACK

5.3.3 NBLStackCreateLB
Creates a new instance of a stack object using a lock-based implemen-

tation.

Syntax C

NBLStackRootx NBLStackCreatelB (
)i

Syntax C++

template <typename T> class
static NBL::Stack<T>x NBL::Stack<T>::CreatelLB (
)

Parameters

Return Values

If successful, the function returns a pointer to a new instance of a stack
object. Otherwise, it returns NULL.

Remarks

The locks are based on spin-locks.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

5.4. OPERATIONS 105

5.4 Operations
5.4.1 NBLStackPush

Pushes a new item on the stack.

Syntax C

int NBLStackPush (
NBLStack* handle,
voidx item

)i

Syntax C++

template <typename T> class
bool NBL: :Stack<T>::Push (

T+ item

)i
Parameters

handle
[in] A pointer to a local handle of a stack object instance.

item
[in] Pointer to the item to push on the stack. This should point
to a memory resident structure which stays valid after the
function call.

Return Values
If successful, the function returns true. Otherwise the stack was full
(i.e. out of memory) and the function returns false.

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all pushed items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

106 CHAPTER 5. SHARED STACK

5.4.2 NBLStackPop

Pops an item from the stack.

Syntax C

voidx NBLStackPop (
NBLStack* handle
)i

Syntax C++
template <typename T> class

Tx NBL::Stack<T>::Pop (
)

Parameters
handle
[in] A pointer to a local handle of a stack object instance.
Return Values

If successful, the function returns a pointer to the item that was on the
top of the stack at some point in time and directly afterwards removed
from the stack. Otherwise the stack was empty at some point in time,
and the function returns NULL.

Remarks

The actual item is not deleted itself by this function, and thus freeing
and memory management has to be handled by the calling function.
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

Chapter 6

Shared Queue

The Queue abstract data type is a collection of items in which only the
earliest added item may be accessed. Basic operations are Enqueue
(add to the tail) and Dequeue (remove from the head). Dequeue returns
the item removed. The data structure is also known as a "first-in, first-
out” or FIFO buffer.

The implementations available of a shared queue are:

e A Wait-Free implementation offering single enqueuer, and single
dequeuer support.

e A Lock-Free implementation offering dynamic structure, and bounded
memory usage.

¢ A Lock-Free implementation offering static structure, and bounded
memory usage.

e A Lock-Free implementation offering dynamic structure, and un-
bounded memory usage.

e A Lock-Based implementation.

All of the available implementations of a shared queue offers the
same high-level semantics.

Definition 2 We denote with Q; the abstract state of a queue at the
timet. Q; = [v1,...,v,] is viewed as an list of values v, where |Q;| > 0.
The operations that can be performed on the queue are Enqueue, and
Dequeue. The time t; is defined as the time just before the operation of
interest takes place, and the time t, is defined as the time just after the
same operation takes place. In the following expressions that define the
high-level semantics of our operations, the syntax is Sy : O1, .52, where Sy
is the conditional state before the operation O, and S, is the resulting
state after performing the corresponding operation:

107

108 CHAPTER 6. SHARED QUEUE

Qh : Enqueue(vl)a Qtz = [Ul} + Qtl (61)
Qtl = (Z) : Dequeue() = J—a Qt2 = @ (62)
Qtl = Ql + [Ul} : Dequeue() = Vi, QtQ = Ql (63)

The detailed semantics of these operations are described in the re-
spective detailed description of each individual operation.

6.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

6.1.1 C

NBLQueueCreateWF SS Creates a new instance of a queue object us-
ing a wait-free implementation. See Section [6.3.1

NBLQueueCreateLF DB Creates a new instance of a queue object us-
ing a lock-free implementation. See Section [6.3.2]

NBLQueueCreateLF SB Creates a new instance of a queue object us-
ing a lock-free implementation. See Section [6.3.3

NBLQueueCreateLF DU Creates a new instance of a queue object us-
ing a lock-free implementation. See Section [6.3.4]

NBLQueueCreateLB Creates a new instance of a queue object using a
lock-based implementation. See Section [6.3.

NBLQueueEnqueue Puts a new item on top of the queue. See Section
6.4, 1]

NBLQueueDequeue Removes an item from bottom of the queue. See
Section

NBLQueuelsEmpty Answers whether the queue is empty or not. See
Section

NBLQueueSize Estimates the current number of items in the queue.
See Section

6.2. EXAMPLES 109

6.1.2 C++

namespace NBL {
template <typename T> class Queue {
// Constructors
static Queue <T>x CreateLF_DB (int nrOfBlocks);
static Queue <T>x CreatelLF_DU (int nrOfBlocks);
static Queue<T>* CreatelLF_SB (int nrNodes) ;
static Queue<T>* CreateWF_SS (int nrNodes) ;
static Queue <T>* CreatelB();
// Operations
bool Enqueue (T *item);
T *xDequeue () ;
int Size();
bool IsEmpty();
bi
bi

NBL::Queue::CreateWF_SS Creates a new instance of a queue object
using a wait-free implementation. See Section [6.3.1

NBL::Queue::CreateLF DB Creates a new instance of a queue object
using a lock-free implementation. See Section [6.3.2]

NBL::Queue::CreateLF SB Creates a new instance of a queue object
using a lock-free implementation. See Section [6.3.3]

NBL::Queue::CreateLF DU Creates a new instance of a queue object
using a lock-free implementation. See Section [6.3.4]

NBL::Queue::CreateLB Creates a new instance of a queue object using
a lock-based implementation. See Section [6.3.

NBL::Queue::Enqueue Puts a new item on top of the queue. See Sec-
tion

NBL::Queue::Dequeue Removes an item from bottom of the queue.
See Section [6.4.2)]

NBL::Queue::IsEmpty Answers whether the queue is empty or not.
See Section

NBL::Queue::Size Estimates the current number of items in the queue.
See Section

6.2 Examples

6.2.1 C

110 CHAPTER 6. SHARED QUEUE

NBLQueueRoot =xqueue;
int items[4]={1,2,3,4};

void main (int argc, char **argv)

{

/* Create a lock-free queue data object, with maximum space
for appr. 100 items =*/
queue = NBLQueueCreateLF_DB(100);

/* Creating and running the threads ... x/
/* Freeing the memory that the queue object used */

NBLQueueFree (queue) ;
queue=NULL;

void Threadl ()

{

NBLQueue =xhandle;
/* Get the local handle to the shared queue x/
handle=NBLQueueGetHandle (queue) ;

/* Enqueue an item on the queue, i.e. putting items[3] on the
queue */
NBLQueueEnqueue (handle, & (items[3]));

/+ Free the local handle to the shared queue =*/
NBLQueueFreeHandle (handle) ;

void Thread2 ()

{

int xitem;

NBLQueue whandle;

/+ Get the local handle to the shared queue */
handle=NBLQueueGetHandle (queue) ;

/* Enqueue another item on the queue, i.e. putting items[2]
on the queue */
NBLQueueEnqueue (handle, & (items[2])) ;

/* Dequeueing an item from the queue i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest «/

item = NBLQueueDequeue (handle) ;

/* Free the local handle to the shared queue =/
NBLQueueFreeHandle (handle) ;

6.2. EXAMPLES 111

void Thread3 ()

6.2.2 C++

NBL: :Queue<int> xqueue;
int items([4]={1,2,3,4};

void main (int argc, char **argv)
{
/* Create a lock-free queue data object, with maximum space
for appr. 100 items =/
queue = NBL::Queue<int>::CreatelF_DB(100);

/* Creating and running the threads ... */

/+ Freeing the memory that the queue object used x/
delete queue;
queue=NULL;

void Threadl ()
{

/* Enqueue an item on the queue, i.e. putting items[3] on the
queue */
queue->Enqueue (& (items[3]));

void Thread?2 ()
{

int *xitem;

/* Enqueue another item on the queue, i.e. putting items[2]
on the queue x/
queue->Enqueue (& (items[2]));

/* Dequeueing an item from the queue i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest =*/

item = queue->Dequeue () ;

void Thread3 ()

112 CHAPTER 6. SHARED QUEUE

6.3 Creation

The following functions are used to create a new queue shared data
structure.

NBLQueueCreateWF _SS Creates a new instance of a queue object us-
ing a wait-free implementation. See Section [6.3.1}

NBLQueueCreateLF DB Creates a new instance of a queue object us-
ing a lock-free implementation. See Section [6.3.2]

NBLQueueCreateLF SB Creates a new instance of a queue object us-
ing a lock-free implementation. See Section |6.3.3

NBLQueueCreateLF DU Creates a new instance of a queue object us-
ing a lock-free implementation. See Section [6.3.4]

NBLQueueCreateLB Creates a new instance of a queue object using a
lock-based implementation. See Section

6.3. CREATION 113

6.3.1 NBLQueueCreateWF_SS

Creates a new instance of a queue object using a wait-free implementa-
tion. The implementation supports limited concurrency, only allowing
one enqueue operation concurrently with one dequeue operation.

The items are stored in a static structure that increases dynamically
in size with increasing queue size. The amount of memory occupied at
any moment in time for storing the items is bounded.

Syntax C

NBLQueueRoot* NBLQueueCreateWF_SS (
int nrOfBlocks
)i

Syntax C++
template <typename T> class
static NBL::Queue<T>x NBL: :Queue<T>: :CreateWF_SS (

int nrOfBlocks = 1000
)

Parameters

nrOfBlocks
[in] The initial number of memory blocks that are used for the
implementation of the queue. This measures approximately
the number of items that can be stored into the queue:
nrO fBlocks = n+ 1, where n=nrOfltems, N=nrOfThreads

Return Values
If successful, the function returns a pointer to a new instance of a
queue object. Otherwise, it returns NULL.

Remarks

This implementation only supports two handles, one performing en-
queue operations and the other performing dequeue operations, possi-
bly concurrently.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

114 CHAPTER 6. SHARED QUEUE

6.3.2 NBLQueueCreateLF DB

Creates a new instance of a queue object using a lock-free implemen-
tation.

The items are stored in a dynamic structure. The amount of memory
occupied at any moment in time for storing the items is bounded.

Syntax C

NBLQueueRoot+* NBLQueueCreatelLF_DB (
int nrOfBlocks

)i

Syntax C++

template <typename T> class

static NBL::Queue<T>x NBL::Queue<T>::CreateLF_DB (

int nrOfBlocks = 1000
)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used
for the implementation of the queue. This measures approxi-
mately the number of items that can be stored into the queue:
nrOfBlocks = n + N? x 4 + N , where n=nrOfltems,
N=nrOfThreads

Return Values

If successful, the function returns a pointer to a new instance of a
queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

6.3. CREATION 115

6.3.3 NBLQueueCreateLF SB

Creates a new instance of a queue object using a lock-free implemen-
tation.

The items are stored in a static structure. The amount of memory
occupied at any moment in time for storing the items is bounded.

Syntax C

NBLQueueRootx NBLQueueCreatelLF_SB(
int nrOfBlocks
)i
Syntax C++
template <typename T> class
static NBL::Queue<T>x NBL::Queue<T>::CreateLF_SB(

int nrOfBlocks = 1000
)i

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used
for the implementation of the queue. This measures approxi-
mately the number of items that can be stored into the queue:
nrO f Blocks = n , where n=nrOfltems
On-line Parameters

PARAM _BACK _OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a
queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

116 CHAPTER 6. SHARED QUEUE

6.3.4 NBLQueueCreateLF DU

Creates a new instance of a queue object using a lock-free implemen-
tation. The items are stored in a dynamic structure. The amount of
memory occupied at any moment in time for storing the items is un-
bounded.

Syntax C

NBLQueueRoot* NBLQueueCreatelLF_DU (
int nrOfBlocks

)i

Syntax C++

template <typename T> class

static NBL::Queue<T>x NBL::Queue<T>::CreateLF_DU (

int nrOfBlocks = 1000
)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used

for the implementation of the queue. This measures approxi-
mately the number of items that can be stored into the queue:
nrO fBlocks > n+ N x5, where n=nrOfltems, N=nrOfThreads

Return Values

If successful, the function returns a pointer to a new instance of a

queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

6.3. CREATION 117

6.3.5 NBLQueueCreateLB
Creates a new instance of a queue object using a lock-based implemen-

tation.

Syntax C

NBLQueueRoot* NBLQueueCreatelB (
)i

Syntax C++

template <typename T> class
static NBL: :Queue<T>x NBL: :Queue<T>: :CreatelB (
)i

Parameters

Return Values

If successful, the function returns a pointer to a new instance of a
queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

118 CHAPTER 6. SHARED QUEUE

6.4 Operations

6.4.1 NBLQueueEnqueue

Puts a new item on top of the queue.

Syntax C

int NBLQueueEnqueue (
NBLQueuex handle,
voidx item

)i

Syntax C++
template <typename T> class
bool NBL: :Queue<T>::Enqueue (

void* item

)i
Parameters

handle
[in] A pointer to a local handle of a queue object instance.

item
[in] Pointer to the item to push on the queue. This should point
to a memory resident structure which stays valid after the
function call.

Return Values

If successful, the function returns true. Otherwise the queue was full
(i.e. out of memory) and the function returns false.

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all enqueued items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

6.4. OPERATIONS

119

6.4.2 NBLQueueDequeue

Removes an item from bottom of the queue.

Syntax C

voidx NBLQueueDequeue (
NBLQueue* handle

)i
Syntax C++
template <typename T> class

Tx NBL: :Queue<T>: :Dequeue (
)

Parameters

handle

[in] A pointer to a local handle of a queue object instance.

Return Values

If successful, the function returns a pointer to the item that was on
the head of the queue at some point in time and directly afterwards
removed from the queue. Otherwise the queue was empty at some

point in time, and the function returns NULL.

Remarks

The actual item is not deleted itself by this function, and thus freeing
and memory management has to be handled by the calling function.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

120 CHAPTER 6.

SHARED QUEUE

6.4.3 NBLQueuelsEmpty

Answers whether the queue is empty or not.

Syntax C

int NBLQueueIsEmpty (
NBLQueue* handle
)i

Syntax C++
template <typename T> class

bool NBL: :Queue<T>::IsEmpty (
)

Parameters

handle

[in] A pointer to a local handle of a queue object instance.

Return Values

If the queue does not contain any items, the function returns true.
Otherwise the queue contains items, and the function returns false.

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

6.4. OPERATIONS 121

6.4.4 NBLQueueSize

Estimates the current number of items in the queue.

Syntax C

int NBLQueueSize (
NBLQueue* handle

)i
Syntax C++

template <typename T> class
int NBL: :Queue<T>::Size(
)i

Parameters

handle

[in] A pointer to a local handle of a queue object instance.

Return Values
The function returns an estimation of the number of items currently
stored in the queue.
Remarks
This operation might not be linearizable in all implementations, and
may thus return an estimate which is not accurate according to time.
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

122 CHAPTER 6. SHARED QUEUE

Chapter 7

Shared Deque

The Deque (or doubly-ended queue) abstract data type is a combina-
tion of the stack and the queue abstract data types. The data struc-
ture is a collection of items in which the earliest as well as the latest
added item may be accessed. Basic operations are PushLeft (add to the
head), PopLeft (remove from the head), PushRight (add to the tail), and
PopRight (remove from the tail). PopLeft and PopRight returns the item
removed.
The implementations available of a shared deque are:

¢ A Lock-Free implementation offering high parallelism, and bounded
memory usage.

e A Lock-Free implementation offering high parallelism, and un-
bounded memory usage.

e A Lock-Free implementation offering low parallelism, and bounded
memory usage.

e A Lock-Based implementation.

The terms bounded versus unbounded memory usage just refers
to the amount of memory needed for a certain number of elements in
the targeted data structure, i.e. with bounded memory usage it can
be determined in advance exactly how much memory is needed for a
certain number of elements. The data structures are still fully dynamic
and can contain as many elements as the size of the systems memory
permits.

All of the available implementations of a shared deque offers the
same high-level semantics.

Definition 3 We denote with), the abstract state of a deque at the time
t. Q¢ = [v1,...,v,] is viewed as an list of values v, where |Q;| > 0. The
operations that can be performed on the deque are PushLeft, PushRight,

123

124 CHAPTER 7. SHARED DEQUE

PoplLeft and PopRight. The time t, is defined as the time just before the
operation of interest takes place, and the time t; is defined as the time
Jjust after the same operation takes place. In the following expressions
that define the high-level semantics of our operations, the syntax is S; :
01,52, where S is the conditional state before the operation O, and S,
is the resulting state after performing the corresponding operation:

Q¢, : PushLeft(vy), Q:, = [v1] + Q4 (7.1)

Q¢ : PushRight(v1), Qt, = Q¢ + [v1] (7.2)
Qu, = 0: PopLeft() = L,Q,, = 0 (7.3)

Q¢, = [v1] + Q1 : PopLeft() = v1,Q, = Q1 (7.4)
Q¢, =0 : PopRight() = 1,Q;, =0 (7.5)

Qt, = Q1+ [v1] : PopRight() = v1,Q:, = Q1 (7.6)

The detailed semantics of these operations are described in the re-
spective detailed description of each individual operation.

7.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

7.1.1 C

NBLDequeCreateLF HB Creates a new instance of a deque object us-
ing a lock-free implementation. See Section [7.3.1

NBLDequeCreateLF HU Creates a new instance of a deque object us-
ing a lock-free implementation. See Section [7.3.2]

NBLDequeCreateLF LB Creates a new instance of a deque object us-
ing a lock-free implementation. See Section

NBLDequeCreateLB Creates a new instance of a deque object using a
lock-based implementation. See Section [7.3.4]

NBLDequePushLeft Puts a new item on top of the deque. See Section
4.1l

7.1. OVERVIEW 125

NBLDequePushRight Puts a new item on bottom of the deque. See
Section [7.4.2]

NBLDequePopLeft Removes an item from top of the deque. See Sec-
tion

NBLDequePopRight Removes an item from bottom of the deque. See
Section

7.1.2 C++

namespace NBL {
template <typename T> class Deque {
// Constructors
static Deque<T>* CreateLF_HB (int nrOfBlocks);
static Deque<T>* CreateLF_HU(int nrOfBlocks);
static Deque<T>x CreateLF_LB(int nrOfBlocks, int
nrOfThreads) ;
static Deque<T>* CreatelB();
// Operations
bool PushLeft (T item);
bool PushRight (T item);
Tx PopLeft ();
T+ PopRight () ;
}i
bi

NBL::Deque::CreateLF_ HB Creates a new instance of a deque object
using a lock-free implementation. See Section [7.3.1]

NBL::Deque::CreateLF HU Creates a new instance of a deque object
using a lock-free implementation. See Section [7.3.2]

NBL::Deque::CreateLF LB Creates a new instance of a deque object
using a lock-free implementation. See Section

NBL::Deque::CreateLB Creates a new instance of a deque object using
a lock-based implementation. See Section [7.3.4

NBL::Deque::PushLeft Puts a new item on top of the deque. See Sec-
tion [Z.4.11

NBL::Deque::PushRight Puts a new item on bottom of the deque. See
Section

NBL::Deque::PopLeft Removes an item from top of the deque. See
Section [7.4.3]

NBL::Deque::PopRight Removes an item from bottom of the deque.
See Section

126 CHAPTER 7. SHARED DEQUE

7.2 Examples

7.2.1 C

NBLDequeRoot =xdeque;
int items[4]1={1,2,3,4};

void main (int argc, char xxargv)
{
/+ Create a lock-free deque data object, with maximum space
for appr. 100 items =*/
deque = NBLDequeCreateLF_ST_GPST (100);

/* Creating and running the threads ... x/

/* Freeing the memory that the deque object used */
NBLDequeFree (deque) ;
deque=NULL;

void Threadl ()

{
NBLDeque xhandle;
/+ Get the local handle to the shared deque */
handle=NBLDequeGetHandle (queue) ;

/* Enqueue an item on the deque, i.e. putting items[3] on the
deque */
NBLDequePushLeft (handle, \& (items[3]));

/* Free the local handle to the shared deque */
NBLDequeFreeHandle (handle) ;

void Thread2 ()
{
int xitem;
NBLDegque =xhandle;
/* Get the local handle to the shared deque x/
handle=NBLDequeGetHandle (queue) ;

/* Enqueue another item on the deque, i.e. putting items[2]
on the deque */
NBLDequePushRight (handle, \& (items[2])) ;

/* Dequeueing an item from the deque i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest x/

7.2. EXAMPLES 127

item = NBLDequePopLeft (handle);

/* Free the local handle to the shared deque =/
NBLDequeFreeHandle (handle) ;

void Thread3 ()

7.2.2 C++

NBL: :Deque<int> *deque;
int items[4]={1,2,3,4};

void main (int argc, char **argv)
{
/* Create a lock-free deque data object, with maximum space
for appr. 100 items =/
deque = NBL::Deque<int>::CreatelF_HU(100) ;

/* Creating and running the threads ... */

/* Freeing the memory that the deque object used */
delete deque;
deque=NULL;

void Threadl ()
{
/* Enqueue an item on the deque, i.e. putting items[3] on the
deque */
deque->PushLeft (\& (items[3]));

void Thread?2 ()
{

int *xitem;

/* Enqueue another item on the deque, i.e. putting items[2]
on the deque x/
deque->PushRight (\& (items[2])) ;

/* Dequeueing an item from the deque i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest =*/

item = deque->Popleft ();

128 CHAPTER 7. SHARED DEQUE

void Thread3 ()

7.3. CREATION 129

7.3 Creation

The following functions are used to create a new deque shared data
structure.

7.3.1 NBLDequeCreateLF HB

Creates a new instance of a deque object using a lock-free implemen-
tation.

The implementation allows concurrent operations that operate on
separate items to perform in parallel, thus supporting high parallelism.
The amount of memory occupied at any moment in time for storing the
items is bounded.

Syntax C

NBLDequeRoot* NBLDequeCreateLF_HB (
int nrOfBlocks
)i

Syntax C++

template <typename T> class
static NBL::Deque<T>x NBL::Deque<T>::CreateLF_HB (
int nrOfBlocks = 1000
)i
Parameters
nrOfBlocks

[in] The maximum number of memory blocks that can be used
for the implementation of the deque. This measures approxi-
mately the number of items that can be stored into the deque:

nrOfBlocks = n + N? x 12 + N , where n=nrOfltems,
N=nrOfThreads

On-line Parameters

PARAM BACK _OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section [2.4.3]

Return Values

If successful, the function returns a pointer to a new instance of a
deque object. Otherwise, it returns NULL.

130 CHAPTER 7. SHARED DEQUE

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

7.3. CREATION 131

7.3.2 NBLDequeCreateLF HU

Creates a new instance of a deque object using a lock-free implemen-
tation.

The implementation allows concurrent operations that operate on
separate items to perform in parallel, thus supporting high parallelism.
The amount of memory occupied at any moment in time for storing the
items is unbounded.

Syntax C

NBLDequeRoot* NBLDequeCreateLF_HU (
int nrOfBlocks
)i

Syntax C++
template <typename T> class
static NBL::Deque<T>x NBL::Deque<T>::CreateLF_HU (

int nrOfBlocks = 1000
)i

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used
for the implementation of the deque. This measures approxi-
mately the number of items that can be stored into the deque:
nrOfBlocks > n+ N * 11 , where n=nrOfltems, N=nrOfThreads

On-line Parameters

PARAM_BACK.OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a
deque object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

132 CHAPTER 7. SHARED DEQUE

See Also

7.3. CREATION 133

7.3.3 NBLDequeCreateLF LB

Creates a new instance of a deque object using a lock-free implemen-
tation.

The implementation does not allow concurrent operations to per-
form in parallel, thus supporting low parallelism. The amount of mem-
ory occupied at any moment in time for storing the items is bounded.

Syntax C

NBLDequeRoot* NBLDequeCreateLF_LB (
int nrOfBlocks,
int nrOfThreads

)i
Syntax C++

template <typename T> class

static NBL::Deque<T>x NBL::Deque<T>::CreatelF_LB (
int nrOfBlocks = 1000,
int nrOfThreads = 16

)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used

for the implementation of the deque. This measures approxi-
mately the number of items that can be stored into the deque:
nrOfBlocks = n + N2 x 6 + N , where n=nrOfltems,

N=nrOfThreads
nrOfThreads

[in] The maximum number of concurrent threads that will ac-
cess the structure.

Return Values

If successful, the function returns a pointer to a new instance of a
deque object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

134 CHAPTER 7. SHARED DEQUE

7.3.4 NBLDequeCreateLB
Creates a new instance of a deque object using a lock-based implemen-

tation.

Syntax C

NBLDequeRoot* NBLDequeCreateLB (
)i

Syntax C++

template <typename T> class
static NBL: :Deque<T>* NBL::Deque<T>::CreatelB (
)i

Parameters

Return Values

If successful, the function returns a pointer to a new instance of a
deque object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

7.4. OPERATIONS 135

7.4 Operations
7.4.1 NBLDequePushLeft

Puts a new item on top of the deque.

Syntax C

int NBLDequePushLeft (
NBLDequex handle,
voidx item

)i

Syntax C++

template <typename T> class
bool NBL: :Deque<T>::PushLeft (

voidx item

)i
Parameters

handle
[in] A pointer to a local handle of a deque object instance.

item
[in] Pointer to the item to push on the deque. This should point
to a memory resident structure which stays valid after the
function call.

Return Values
If successful, the function returns true. Otherwise the deque was full
(i.e. out of memory) and the function returns false.

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all enqueued items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

136 CHAPTER 7. SHARED DEQUE

7.4.2 NBLDequePushRight

Puts a new item on the bottom of the deque.

Syntax C

int NBLDequePushRight (
NBLDeque* handle,
void* item

)i

Syntax C++

template <typename T> class
bool NBL: :Deque<T>::PushRight (

void*x item

)i
Parameters
handle

[in] A pointer to a local handle of a deque object instance.

item
[in] Pointer to the item to push on the deque. This should point
to a memory resident structure which stays valid after the
function call.

Return Values

If successful, the function returns true. Otherwise the deque was full
(i.e. out of memory) and the function returns false.

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all enqueued items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

7.4. OPERATIONS 137

7.4.3 NBLDequePopLeft

Removes an item from the top of the deque.

Syntax C

voidx NBLDequePopLeft (
NBLDequex handle
)i

Syntax C++
template <typename T> class

Tx NBL: :Deque<T>::PopLeft (
)

Parameters
handle
[in] A pointer to a local handle of a deque object instance.
Return Values

If successful, the function returns a pointer to the item that was on the
top of the deque at some point in time and directly afterwards removed
from the deque. Otherwise the deque was empty at some point in time,
and the function returns NULL.

Remarks

The actual item is not deleted itself by this function, and thus freeing
and memory management has to be handled by the calling function.
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

138 CHAPTER 7. SHARED DEQUE

7.4.4 NBLDequePopRight

Removes an item from the bottom of the deque.

Syntax C

void+ NBLDequePopRight (
NBLDequex handle
)i

Syntax C++
template <typename T> class

T+ NBL: :Deque<T>: :PopRight (
)i

Parameters
handle
[in] A pointer to a local handle of a deque object instance.
Return Values

If successful, the function returns a pointer to the item that was on
the bottom of the deque at some point in time and directly afterwards
removed from the deque. Otherwise the deque was empty at some point
in time, and the function returns NULL.

Remarks

The actual item is not deleted itself by this function, and thus freeing
and memory management has to be handled by the calling function.
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

Chapter 8

Shared Priority Queue

The Priority Queue abstract data type is a collection of items which

can efficiently support finding the item with the highest priority. Basic

operations are Insert (add an item), FindMin (finds the item with min-

imum (or maximum) priority), and DeleteMin (removes the item with

minimum (or maximum) priority). DeleteMin returns the item removed.
The implementations available of a shared priority queue are:

e A Lock-Free implementation offering expected logarithmic sequen-
tial time complexity, and bounded memory usage.

A Lock-Free implementation offering expected logarithmic sequen-
tial time complexity, and unbounded memory usage.

A Lock-Based implementation offering static structure, and deter-
ministic logarithmic sequential time complexity.

A Lock-Based implementation offering dynamic structure, and de-
terministic logarithmic sequential time complexity.

A Lock-Based implementation offering expected logarithmic se-
quential time complexity.

All of the available implementations of a shared priority queue offers
the same high-level semantics.

Definition 4 We denote with L, the abstract state of a priority queue
at the time t. Ly = [(p1,v1),...,{(Pn,vn)], Where |L;| > 0, is viewed as
a list of pairs (p,v) consisting of a priority p and a corresponding value
v. The operations that can be performed on the priority queue are Insert,
FindMin, and DeleteMin. The timet; is defined as the time just before the
operation of interest takes place, and the time t, is defined as the time
just after the same operation takes place. In the following expressions
that define the high-level semantics of our operations, the syntax is S; :

139

140 CHAPTER 8. SHARED PRIORITY QUEUE

01, S2, where S; is the conditional state before the operation O, and Ss
is the resulting state after performing the corresponding operation:

Ly, = L1+ [{p1,v1)] + [{ps, vs)] + La Ap1 <= pa Ap2 <p3:
Insert({pz, v2)) = true,

L, = Ly + [(p1,v1)] + [(p2, v2)] + [{p3, v3)] + L2

Ly, = [{p1,v1)] + L1 : FindMin() = (p1,v1), L, = Ly,

L, =0:FindMin() = L, Ly, = Ly

Lt1 = [<p1, 1}1>] —+ L1 N DeleteMin() = <p1,V1>, Lt2 = L1

L;, =0 : DeleteMin() = L, Ly, = Ly

The detailed semantics of these operations are described in the re-
spective detailed description of each individual operation.

8.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

8.1.1 C

NBLPQueueCreateLF EB Creates a new instance of a priority queue
object using a lock-free implementation. See Section [8.3.1

NBLPQueueCreateLF EU Creates a new instance of a priority queue
object using a lock-free implementation. See Section [8.3.2]

NBLPQueueCreateLB_SD Creates a new instance of a priority queue
object using a lock-based implementation. See Section [8.3.3]

NBLPQueueCreateLB_ DD Creates a new instance of a priority queue
object using a lock-based implementation. See Section [8.3.4]

NBLPQueueCreateLB E Creates a new instance of a priority queue ob-
ject using a lock-based implementation. See Section [8.3.5|

8.1. OVERVIEW 141

NBLPQueuelnsert Inserts a new item. See Section [8.4.1]

NBLPQueueDeleteMin Removes the item with the lowest priority. See
Section |8.4.2)

NBLPQueueFindMin Finds the item with the lowest priority. See Sec-
tion

8.1.2 C++

namespace NBL {
template <typename T, typename P = int> class PQueue {
// Constructors
static PQueue<T,P>* CreatelF_EB(int nrOfBlocks, int
avgNodes) ;
static PQueue<T,P>% CreatelF_EU(int nrOfBlocks, int
avgNodes) ;
static PQueue<T,P>x CreatelB_E (int avgNodes) ;
static PQueue<T,P>* CreatelB_SD (int nrOfBlocks, int
nrOfThreads) ;
static PQueue<T,P>x CreateLB_DD();
// Operations
bool Insert (Px priority, T *item);
T+ FindMin (P*x% priority);
T+ DeleteMin (Pxx priority);
}i

template <typename T, int> class PQueue \{
// Constructors
static PQueue<T, int>x CreateLF_EB (int nrOfBlocks, int
avgNodes) ;
static PQueue<T, int>x CreateLF_EU (int nrOfBlocks, int
avgNodes) ;
static PQueue<T,int>% CreatelB_E (int avgNodes) ;
static PQueue<T,int>x CreateLB_SD (int nrOfBlocks, int
nrOfThreads) ;
static PQueue<T, int>x CreateLB_DD () ;
// Operations
bool Insert (int priority, T *item);
T FindMin (int % priority);
T+ DeleteMin (int *» priority);
bi
bi

// Definied elsewhere for typename P
bool operator < (const P &tl, const P &t2);
bool operator == (const P &tl, const P &t2);

NBL::PQueue::CreateLF EB Creates a new instance of a priority queue
object using a lock-free implementation. See Section [8.3.1

142 CHAPTER 8. SHARED PRIORITY QUEUE

NBL::PQueue::CreateLF_EU Creates a new instance of a priority queue
object using a lock-free implementation. See Section|[8.3.2]

NBL::PQueue::CreateLB_SD Creates a new instance of a priority queue
object using a lock-based implementation. See Section [8.3.3]

NBL::PQueue::CreateLB DD Creates a new instance of a priority queue
object using a lock-based implementation. See Section [8.3.4

NBL::PQueue::CreateLB_E Creates a new instance of a priority queue
object using a lock-based implementation. See Section [8.3.5|

NBL::PQueue::Insert Inserts a new item. See Section

NBL::PQueue::DeleteMin Removes the item with the lowest priority.
See Section

NBL::PQueue::FindMin Finds the item with the lowest priority. See
Section [8.4.3]

8.2 Examples
821 C

NBLPQueueRooOt xpqueue;
int items([4]={1,2,3,4};

void main (int argc, char xxargv)
{
/+ Create a lock-free priority queue object, with maximum
space for appr. 100 items =*/
pgqueue = NBLPQueueCreateLF_EB(100);

/* Creating and running the threads ... %/

/* Freeing the memory that the list object used */
NBLPQueueFree (pqueue) ;
pqueue=NULL;

}

void Threadl ()

{
NBLPQueue <handle;
/* Get the local handle to the shared priority queue =*/
handle=NBLPQueueGetHandle (pqueue) ;

/+ Insert an item in the queue, i.e. putting items[3] on the
queue */

8.2. EXAMPLES 143

NBLPQueueInsert (handle, & (items[3]),4);

/* Free the local handle to the shared priority queue =/
NBLPQueueFreeHandle (handle) ;

void Thread?2 ()
{

int *xitem;

NBLPQueue +*handle;

/* Get the local handle to the shared priority queue x/
handle=NBLPQueueGetHandle (pqueue) ;

/* Enlist another item on the queue, i.e. putting items[2] on
the queue =/
NBLPQueueInsert (handle, & (items[2]),3);

/* Deleting an item from the queue i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest =*/

item = NBLPQueueDeleteMin (handle) ;

/+ Free the local handle to the shared priority queue =*/
NBLPQueueFreeHandle (handle) ;

void Thread3 ()

8.2.2 C++

NBL: :PQueue<int, int> xpqueue;
int items[4]={1,2,3,4};

void main (int argc, char xxargv)

{

/* Create a lock-free priority queue object, with maximum
space for appr. 100 items =*/
pgueue = NBL: :PQueue<int,int>::CreatelF_EB(100);

/* Creating and running the threads ... */
/+ Freeing the memory that the list object used x/

delete pqgqueue;
pgueue=NULL;

void Threadl ()
{

144 CHAPTER 8. SHARED PRIORITY QUEUE

/* Insert an item in the queue, i.e. putting items[3] on the
queue */
pgueue->Insert (& (items[3]),4);

void Thread2 ()
{

int xitem;

/* Enlist another item on the queue, i.e. putting items[2] on
the queue x/
pgueue->Insert (& (items[2]),3);

/* Deleting an item from the queue i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest =/

item = pqueue->DeleteMin () ;

void Thread3 ()

8.3. CREATION 145

8.3 Creation

The following functions are used to create a new priority queue shared
data structure.

The implementation uses randomization and permits an expected
logarithmic time complexity for insert operations that execute sequen-
tially. The amount of memory occupied at any moment in time for
storing the items is bounded.

8.3.1 NBLPQueueCreateLF EB

Creates a new instance of a priority queue object using a lock-free im-
plementation.

Syntax C

NBLPQueueRoot * NBLPQueueCreatelLF_EB(
int nrOfBlocks,
int avgNodes

)i

Syntax C++

template <typename T, typename P = int> class

static NBL::PQueue<T,P>% NBL::PQueue<T,P>::CreatelF_EB (
int nrOfBlocks = 1000,
int avgNodes = 500

)i

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used

for the implementation of the priority queue. This measures
approximately the number of items that can be stored into the
priority queue:

nrOf Blocks = n+N?%(10+2xmax Level)+ N , where n=nrOfltems,

N=nrOfThreads
avgNodes

[in] The expected average number of items in the structure.

On-line Parameters

PARAM BACK _OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

PARAM_PRI_COMPARE _FN

146 CHAPTER 8. SHARED PRIORITY QUEUE

For detailed parameter descriptions see Sections [2.4.3|and [2.4.4]

Return Values

If successful, the function returns a pointer to a new instance of a
priority queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use 1ibNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

8.3. CREATION 147

8.3.2 NBLPQueueCreateLF EU

Creates a new instance of a priority queue object using a lock-free im-
plementation.

The implementation uses randomization and permits an expected
logarithmic time complexity for insert operations that execute sequen-
tially. The amount of memory occupied at any moment in time for
storing the items is unbounded.

Syntax C

NBLPQueueRoot* NBLPQueueCreateLF_EU (
int nrOfBlocks,
int avgNodes

)

Syntax C++

template <typename T, typename P = int> class

static NBL::PQueue<T,P>* NBL::PQueue<T,P>::CreatelLF_EU
int nrOfBlocks = 1000,
int avgNodes = 500

)i

Parameters

nrOfBlocks
[in] The maximum number of memory cells that can be used
for the implementation of the priority queue. This measures
approximately the number of actual items that can be stored
into the priority queue.

avgNodes
[in] The expected average number of items in the structure.

On-line Parameters

PARAM BACK OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

PARAM_PRI_COMPARE _FN

For detailed parameter descriptions see Sections [2.4.3|and [2.4.4]

Return Values

If successful, the function returns a pointer to a new instance of a
priority queue object. Otherwise, it returns NULL.

148 CHAPTER 8. SHARED PRIORITY QUEUE

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

8.3. CREATION 149

8.3.3 NBLPQueueCreateLB SD

Creates a new instance of a priority queue object using a lock-based
implementation.

The items are stored in a static structure. The implementation per-
mits a deterministic logarithmic time complexity for insert operations
that execute sequentially.

Syntax C

NBLPQueueRoot * NBLPQueueCreateLB_SD (
int nrOfBlocks,
int nrOfThreads

)i
Syntax C++

template <typename T, typename P = int> class

static NBL: :PQueue<T,P>x NBL::PQueue<T,P>::CreateLB_SD (
int nrOfBlocks = 1000,
int nrOfThreads = 16

)i

Parameters

nrOfBlocks
[in] The maximum number of memory cells that can be used

for the implementation of the priority queue. This measures
approximately the number of actual items that can be stored

into the structure.
nrOfThreads

[in] The maximum number of concurrent threads that will ac-
cess the structure.

On-line Parameters

PARAM_PRI_ COMPARE _FN

For detailed parameter descriptions see Section [2.4.4

Return Values

If successful, the function returns a pointer to a new instance of a
priority queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

150 CHAPTER 8. SHARED PRIORITY QUEUE

See Also

8.3. CREATION 151

8.3.4 NBLPQueueCreateLB DD

Creates a new instance of a priority queue object using a lock-based
implementation.

The items are stored in a dynamic structure. The implementation
permits a deterministic logarithmic time complexity for insert opera-
tions that execute sequentially.

Syntax C

NBLPQueueRoot * NBLPQueueCreateLB_DD (
)

Syntax C++

template <typename T, typename P = int> class
static NBL: :PQueue<T,P>x NBL::PQueue<T,P>::CreateLB_DD (
)i

Parameters
On-line Parameters

PARAM_PRI_.COMPARE_FN

For detailed parameter descriptions see Section [2.4.4]

Return Values

If successful, the function returns a pointer to a new instance of a
priority queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

152 CHAPTER 8. SHARED PRIORITY QUEUE

8.3.5 NBLPQueueCreateLB E

Creates a new instance of a priority queue object using a lock-based
implementation.

The implementation uses randomization and permits an expected
logarithmic time complexity for insert operations that execute sequen-
tially.

Syntax C

NBLPQueueRoot* NBLPQueueCreateLB_FE (
int avgNodes
)

Syntax C++

template <typename T, typename P = int> class

static NBL: :PQueue<T,P>x NBL: :PQueue<T,P>::CreatelB_E (
int avgNodes = 500

)i

Parameters
avgNodes
[in] The expected average number of items in the structure.
On-line Parameters

PARAM_PRI_COMPARE _FN

For detailed parameter descriptions see Section 2.4.4

Return Values

If successful, the function returns a pointer to a new instance of a
priority queue object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

8.4. OPERATIONS

153

8.4 Operations

8.4.1 NBLPQueuelnsert

Inserts a new item.

Syntax C

int NBLPQueuelInsert (
NBLPQueuex handle,
voidx priority,
voidx item

)i

Syntax C++

template <typename T, int> class
bool NBL: :PQueue<T, int>::Insert (

int priority,
T+ item
)i

template <typename T, typename P> class
bool NBL::PQueue<T,P>::Insert (

Px priority,
T+ item

)i

Parameters

handle

[in] A pointer to a local handle of a priority queue object in-

stance.
priority

[in] Pointer to the priority of the item to insert in the prior-
ity queue. This should point to a memory resident structure
which stays valid after the function call.

item

[in] Pointer to the item to insert in the priority queue. This
should point to a memory resident structure which stays valid

after the function call.

Return Values

If successful, the function returns true. Otherwise the priority queue

was full (i.e. out of memory), and the function returns false.

154 CHAPTER 8. SHARED PRIORITY QUEUE

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all inserted items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

8.4. OPERATIONS 155

8.4.2 NBLPQueueDeleteMin

Removes the item with the lowest priority.

Syntax C

void* NBLPQueueDeleteMin (
NBLPQueuex handle,
void x*priority

)
Syntax C++

template <typename T, int> class

T+ NBL::PQueue<T, int>: :DeleteMin (
intx priority = NULL

)i

template <typename T, typename P> class
T+ NBL: :PQueue<T,P>::DeleteMin (

Pxx priority = NULL
)i

Parameters
handle

[in] A pointer to a local handle of a priority queue object in-
stance.

priority
[out] Optional. NULL or a pointer to valid memory where a
pointer to the priority of the deleted item will be stored.
Return Values

If successful, the function returns a pointer to the item that was re-
moved. Otherwise the priority queue was empty and the function re-
turns NULL.

Remarks

The actual item is not deleted itself by this function, and thus freeing
and memory management has to be handled by the calling function.
Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

156 CHAPTER 8. SHARED PRIORITY QUEUE

8.4.3 NBLPQueueFindMin

Finds the item with the lowest priority.

Syntax C

void* NBLPQueueFindMin (
NBLPQueue* handle,
void** priority

)i
Syntax C++

template <typename T, int> class

T+ NBL: :PQueue<T, int>::FindMin (
intx priority = NULL

)i

template <typename T, typename P> class
T+ NBL: :PQueue<T,P>: :FindMin (

Px+ priority = NULL
)

Parameters

handle
[in] A pointer to a local handle of a priority queue object in-
stance.

priority

[out] Optional. NULL or a pointer to valid memory where a
pointer to the priority of the item will be stored.

Return Values

If successful, the function returns a pointer to the item. Otherwise the

priority queue was empty and the function returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

Chapter 9

Shared Dictionary

The Dictionary abstract data type is a collection of items where each
item is associated with a key. The data structure should efficiently
support finding the item associated with the specific key. Basic opera-
tions are Insert (add an item associated with a key), Find (finds the item
associated with a certain key), and Delete (removes the item associated
with a certain key). Delete returns the item removed. In a concurrent
environment an additional basic operation is Update (re-assign the as-
sociation of a key with a certain item).
The implementations available of a shared dictionary are:

e A Lock-Free implementation offering expected logarithmic sequen-
tial time complexity, and bounded memory usage.

e A Lock-Free implementation offering expected logarithmic sequen-
tial time complexity, and unbounded memory usage.

e A Lock-Free implementation offering linear sequential time com-
plexity, and bounded memory usage.

e A Lock-Based implementation offering expected logarithmic se-
quential time complexity.

All of the available implementations of a shared priority queue offers
the same high-level semantics.

Definition 5 We denote with L, the abstract state of a dictionary at the
time t. Ly = {(k1,v1),...,{kn,vn)}, where |L;| > 0, is viewed as a set
of pairs (k,v) consisting of a unique key k and a corresponding value
v. The operations that can be performed on the dictionary are Insert,
Update, Find, and Delete. The time t; is defined as the time just before
the operation of interest takes place, and the time t, is defined as the time
just after the same operation takes place. In the following expressions
that define the high-level semantics of our operations, the syntax is S; :

157

158 CHAPTER 9. SHARED DICTIONARY

01, S2, where S; is the conditional state before the operation O, and Ss
is the resulting state after performing the corresponding operation:

(k1,-) & L, : Insert((ky,v1)) = true, Ly, = Ly, U {(k1,v1)} 9.1)

(k1,-) € Ly, : Insert((ky,v1)) = L, Ly, = Ly, 9.2)

(k1,-) € Ly, : Update((ky,v1)) = true, L, = Ly, U {(k1,v1)} (9.3)

<k1a 'U11> € Ltl : Update(<k1avlz>) = Vi1,

Lg, = Le, \ {(ka, va,)} U{(ka, v1,)} (9.4)

(k1,01) € Ly, : Find(ky) = v1 9.5)

(kv,01) & Ly, : Find(kq) = L 9.6)

(k1,v1) € Ly, : Delete(ky) = v1, Ly, = Ly, \ {(k1,v1)} (9.7)
(k1,01) & Ly, : Delete(ky) = L 9.8)

9.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

9.1.1 C

NBLDictionaryCreateLF EB Creates a new instance of a dictionary
object using a lock-free implementation. See Section9.3.1

NBLDictionaryCreateLF EU Creates a new instance of a dictionary
object using a lock-free implementation. See Section[9.3.2]

NBLDictionaryCreateLF LB Creates a new instance of a dictionary
object using a lock-free implementation. See Section[9.3.3]

NBLDictionaryCreateLB_E Creates a new instance of a dictionary ob-
ject using a lock-based implementation. See Section [9.3.4]

9.1. OVERVIEW 159

NBLDictionaryInsert Inserts a new association. See Section [9.4.1

NBLDictionaryUpdate Updates an existing association. See Section
9.4.2)

NBLDictionaryDelete Deletes an association. See Section [9.4.3

NBLDictionaryFind Finds the value associated with a certain key. See
Section [9.4.4

9.1.2 C++

namespace NBL {
template <typename T, typename K = int> class Dictionary {

// Constructors

static Dictionary<T,K>x CreatelLF_EB (int nrOfBlocks, int
avgNodes) ;

static Dictionary<T,K>x CreatelF_EU (int nrOfBlocks, int
avgNodes) ;

static Dictionary<T,K>x CreatelLF_LB (int nrOfBlocks);

static Dictionary<T,K>x CreatelB_E (int avgNodes) ;

// Operations

bool Insert (Kx key, Tx item);

bool Update (Kx key, Tx item, Txx old);

T *xDelete (Kx key);

T xFind (K*x key);

// RAuxiliary functions

void SetValueMemoryHandler (Memory<T> *memory) ;

}i

template <typename T, int> class Dictionary {
// Constructors
static Dictionary<T,int>* CreatelLF_EB (int nrOfBlocks, int
avgNodes) ;
static Dictionary<T,int>% CreatelLF_EU(int nrOfBlocks, int
avgNodes) ;
static Dictionary<T,int>% CreatelLF_LB(int nrOfBlocks);
static Dictionary<T, int>x CreatelB_E (int avgNodes) ;
// Operations
bool Insert (int key, Tx item);
bool Update (int key, Tx item, Txx old);
T *Delete (int key);
T xFind (int key);
// Auxiliary functions
void SetValueMemoryHandler (Memory<T> *memory) ;
}i
bi

// Definied elsewhere for typename K

160 CHAPTER 9. SHARED DICTIONARY

bool operator < (const K &tl, const K &t2);
bool operator == (const K &tl, const K &t2);

NBL::Dictionary::CreateLF EB Creates a new instance of a dictionary
object using a lock-free implementation. See Section|9.3.1

NBL::Dictionary::CreateLF EU Creates a new instance of a dictionary
object using a lock-free implementation. See Section[9.3.2]

NBL::Dictionary::CreateLF LB Creates a new instance of a dictionary
object using a lock-free implementation. See Section[9.3.3]

NBL::Dictionary::CreateLB_E Creates a new instance of a dictionary
object using a lock-based implementation. See Section [9.3.4]

NBL::Dictionary::Insert Inserts a new association. See Section [9.4.1

NBL::Dictionary::Update Updates an existing association. See Sec-
tion 9.4.2]

NBL::Dictionary::Delete Deletes an association. See Section [9.4.3

NBL::Dictionary::Find Finds the value associated with a certain key.
See Section

NBL::Dictionary::SetValueMemoryHandler Sets the custom value mem-
ory manager. See Section

9.2 Examples

9.2.1 C

NBLDictionary =dict;
int items[4]={1,2,3,4};

void main (int argc, char **argv)
{
/* Create a lock-free dictionary object, with maximum space
for appr. 100 items =*/
dict = NBLDictionaryCreateLF_EB(100,100);

/* Creating and running the threads ... %/
/* Freeing the memory that the dictionary object used =/

NBLDictionaryFree (dict);
dict=NULL;

9.2. EXAMPLES 161

void Threadl ()

{
NBLDictionary =xhandle;
/* Get the local handle to the shared dictionary =*/
handle=NBLDictionaryGetHandle (dict) ;

/* Insert an item in the dictionary, i.e. associating items
[3] with

the key 1 in the list =x/

NBLDictionaryInsert (handle, 1, & (items[3]));

/* Free the local handle to the shared dictionary =/
NBLDictionaryFreeHandle (handle) ;

void Thread2 ()
{
int *xitem;
NBLDictionary =xhandle;
/* Get the local handle to the shared dictionary =/
handle=NBLDictionaryGetHandle (dict) ;

/+ Insert another item on the dictionary, i.e. associating
items[2]

with the dictionary =*/

NBLDictionaryInsert (handle, 2, & (items([2]));

/* Deleting an association from the dictionary i.e. we should
get

a pointer to items[3] if Threadl has been run so far =/

item = NBLDictionaryDelete (handle, 1) ;

/* Free the local handle to the shared dictionary =/
NBLDictionaryFreeHandle (handle) ;

void Thread3 ()

9.2.2 C++

NBL: :Dictionary<int, int> xdict;
int items([4]={1,2,3,4};

void main (int argc, char *xargv)
{
/* Create a lock—free dictionary object, with maximum space
for appr. 100 items =x/
dict = NBL::Dictionary<int,int>::CreatelLF_EB(100,100);

162 CHAPTER 9. SHARED DICTIONARY

/* Creating and running the threads ... x/

/* Freeing the memory that the dictionary object used =/
delete dict;
dict=NULL;

void Threadl ()
{
/* Insert an item in the dictionary, i.e. associating items
[3] with
the key 1 in the list x/
dict->Insert (1, & (items[3]));

void Thread2 ()
{

int xitem;

/* Insert another item on the dictionary, i.e. associating
items[2]

with the dictionary =*/

dict->Insert (2, & (items[2]));

/* Deleting an association from the dictionary i.e. we should
get

a pointer to items[3] if Threadl has been run so far =/

item = dict->Delete(1l);

void Thread3 ()

9.3. CREATION 163

9.3 Creation

The following functions are used to create a new dictionary shared data
structure.

9.3.1 NBLDictionaryCreateLF EB

Creates a new instance of a dictionary object using a lock-free imple-
mentation.

The implementation uses randomization and permits an expected
logarithmic time complexity for insert operations that execute sequen-
tially. The amount of memory occupied at any moment in time for
storing the items is bounded.

Syntax C

NBLDictionaryRoot* NBLDictionaryCreateLF_EB (
int nrOfBlocks,
int avgNodes

)i
Syntax C++

template <typename T, typename K = int> class

static NBL::Dictionary<T,K>x NBL::Dictionary<T,K>::CreateLF_EB(
int nrOfBlocks = 1000,
int avgNodes = 500

)i

Parameters

nrOfBlocks
[in] The maximum number of memory cells that can be used
for the implementation of the dictionary. This measures ap-
proximately the number of actual items that can be stored into
the dictionary.

avgNodes
[in] The expected average number of items in the structure.

On-line Parameters

PARAM BACK_OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT

PARAM_BACK_OFF_MAX

PARAM_KEY_COMPARE_FN

PARAM_VALUE_MEMORY_HANDLE

164 CHAPTER 9. SHARED DICTIONARY

PARAM_VALUE_MEMORY_ROOT

For detailed parameter descriptions see Sections [2.4.3]| and [2.4.5|
and

Return Values

If successful, the function returns a pointer to a new instance of a
dictionary object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

9.3. CREATION 165

9.3.2 NBLDictionaryCreateLF EU

Creates a new instance of a dictionary object using a lock-free imple-
mentation.

The implementation uses randomization and permits an expected
logarithmic time complexity for insert operations that execute sequen-
tially. The amount of memory occupied at any moment in time for
storing the items is unbounded.

Syntax C

NBLDictionaryRoot* NBLDictionaryCreateLF_ EU (
int nrOfBlocks,
int avgNodes

)i
Syntax C++

template <typename T, typename K = int> class

static NBL::Dictionary<T,K>* NBL::Dictionary<T,K>::CreatelLF_EU (
int nrOfBlocks = 1000,
int avgNodes = 500

)i

Parameters

nrOfBlocks
[in] The maximum number of memory cells that can be used
for the implementation of the dictionary. This measures ap-
proximately the number of actual items that can be stored into
the dictionary.

avgNodes
[in] The expected average number of items in the structure.

On-line Parameters

PARAM BACK_OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

PARAM_KEY_COMPARE_FN

PARAM_VALUE_MEMORY_HANDLE
PARAM_VALUE_MEMORY_ROOT

For detailed parameter descriptions see Sections [2.4.3] and [2.4.5
and 2.4.2

166 CHAPTER 9. SHARED DICTIONARY

Return Values

If successful, the function returns a pointer to a new instance of a
dictionary object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

9.3. CREATION 167

9.3.3 NBLDictionaryCreateLF LB

Creates a new instance of a dictionary object using a lock-free imple-
mentation.

The implementation permits a linear time complexity for insert op-
erations that execute sequentially. The amount of memory occupied at
any moment in time for storing the items is bounded.

Syntax C

NBLDictionaryRoot* NBLDictionaryCreateLF_LB (
int nrOfBlocks
)i

Syntax C++
template <typename T, typename K = int> class
static NBL::Dictionary<T,K>* NBL::Dictionary<T,K>::CreatelF_LB (

int nrOfBlocks = 1000
)i

Parameters

nrOfBlocks
[in] The maximum number of memory cells that can be used

for the implementation of the dictionary. This measures ap-
proximately the number of actual items that can be stored into
the dictionary.
On-line Parameters
PARAM_KEY_COMPARE_FN

PARAM_VALUE_MEMORY_HANDLE
PARAM_VALUE_MEMORY_ROOT

For detailed parameter descriptions see Sections [2.4.5|and [2.4.2]

Return Values

If successful, the function returns a pointer to a new instance of a
dictionary object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

168 CHAPTER 9. SHARED DICTIONARY

See Also

9.3. CREATION 169

9.3.4 NBLDictionaryCreateLB E

Creates a new instance of a dictionary object using a lock-based imple-
mentation.

The implementation uses randomization and permits an expected
logarithmic time complexity for insert operations that execute sequen-
tially.

Syntax C

NBLDictionaryRoot* NBLDictionaryCreateLB_E (
int avgNodes
)i

Syntax C++
template <typename T, typename K = int> class
static NBL::Dictionary<T,K>x NBL::Dictionary<T,K>::CreatelB_E (

int avgNodes = 500
)i

Parameters
avgNodes
[in] The expected average number of items in the structure.
On-line Parameters

PARAM_KEY_COMPARE_FN

PARAM_VALUE_MEMORY_HANDLE
PARAM_VALUE_MEMORY_ROOT

For detailed parameter descriptions see Sections [2.4.5and [2.4.2]

Return Values

If successful, the function returns a pointer to a new instance of a
dictionary object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

170 CHAPTER 9.

SHARED DICTIONARY

9.4 Operations

9.4.1 NBLDictionarylInsert

Inserts a new association.

Syntax C

int NBLDictionaryInsert (
NBLDictionaryx handle,
voidx* key,
void*x wvalue

)i

Syntax C++

template <typename T, int> class
bool NBL::Dictionary<T,int>::Insert (
int key,
Kx value
)

template <typename T, typename K> class
bool NBL::Dictionary<T,K>::Insert (

Kx key,

Tx value
)i

Parameters

handle

[in] A pointer to a local handle of a dictionary object instance.

key

[in] Pointer to the key to insert in the dictionary. This should
point to a memory resident structure which stays valid after

the function call.
value

[in] Pointer to the value to insert in the dictionary. This should
point to a memory resident structure which stays valid after

the function call.

Return Values

If successful, the function returns true. Otherwise the dictionary al-
ready contained an association with the given key or the dictionary
was full (i.e. out of memory), and the function returns false.

9.4. OPERATIONS 171

Remarks

Only the pointers to the new value objects are copied, which means
that the user has to provide some kind of memory management system
to be able to keep all inserted value objects valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

172 CHAPTER 9. SHARED DICTIONARY

9.4.2 NBLDictionaryUpdate

Updates an existing association, or inserts a new if not already present.

Syntax C

int NBLDictionaryUpdate (
NBLDictionary* handle,
voidx key,
void* value,
void** old

)

Syntax C++

template <typename T, int> class
bool NBL::Dictionary<T, int>: :Update (
int key,
Tx value,
T+x% old = NULL
)

template <typename T, typename K> class
bool NBL::Dictionary<T,K>::Update (

Kx key,

T+ value,

Txx old = NULL
)i

Parameters

handle
[in] A pointer to a local handle of a dictionary object instance.

ke

Y [in] Pointer to the key which association should be updated in

the dictionary. This should point to a memory resident struc-
ture which stays valid after the function call.

value
[in] Pointer to the value to associate with the given key in the
dictionary. This should point to a memory resident structure
which stays valid after the function call.

old
[out] Optional. NULL or a pointer to valid memory where a
pointer to the old value that was associated with the given key
in the dictionary will be stored.

Return Values

If successful, the function returns true. Otherwise the dictionary was
full (i.e. out of memory) and the function returns false.

9.4. OPERATIONS 173

Remarks

Only the pointers to the new value objects are copied, which means
that the user has to provide some kind of memory management system
to be able to keep all inserted value objects valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

174 CHAPTER 9. SHARED DICTIONARY

9.4.3 NBLDictionaryDelete

Removes an association with a certain key.

Syntax C

void+ NBLDictionaryDelete (
NBLDictionary* handle,
void xkey

)

Syntax C++

template <typename T, int> class

Tx NBL::Dictionary<T,int>::Delete (
int key

)i

template <typename T, typename K> class
T+ NBL::Dictionary<T,K>::Delete (

K xkey
)i

Parameters
handle

[in] A pointer to a local handle of a dictionary object instance.

key
[in] Pointer to the key which association should be deleted in
the dictionary.

Return Values

If successful, the function returns a pointer to the value that was as-
sociated with the the given key in the dictionary. Otherwise the associ-
ation was already deleted and the function returns NULL.

Remarks

The actual value object is not deleted itself by this function, and thus
freeing and memory management has to be handled by the calling func-
tion.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

9.4. OPERATIONS 175

See Also

176 CHAPTER 9. SHARED DICTIONARY

9.4.4 NBLDictionaryFind

Returns the value that is associated with a certain key.

Syntax C

void+ NBLDictionaryFind (
NBLDictionaryx handle,
voidx* key

)

Syntax C++

template <typename T, int> class

T+ NBL::Dictionary<T,int>::Find(
int key

)i

template <typename T, typename K> class
T+ NBL::Dictionary<T,K>::Find (

K*x key
)

Parameters

handle

[in] A pointer to a local handle of a dictionary object instance.
key

[in] Pointer to the key which association should be found.

Return Values

If successful, the function returns a pointer to the value that is asso-
ciated with the given key in the dictionary. Otherwise there was no
association in the dicionary, and the function returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

9.4. OPERATIONS 177

9.4.5 NBL::Dictionary::SetValueMemoryHandler

Sets the custom value memory manager.

Syntax C++

template <typename T, int> class
void NBL::Dictionary<T,int>::SetValueMemoryHandler (
Memory<T>x memory

)i

template <typename T, typename K> class
void NBL::Dictionary<T,K>::SetValueMemoryHandler (
Memory<T>x memory

)i
Parameters

memory
[in] Pointer to the memory manager object to be used for val-

ues.

Return Values

None.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

178 CHAPTER 9. SHARED DICTIONARY

Chapter 10

Shared List

The List abstract data type is a collection of items where two items are
related only with respect to their relative position to each other. The
data structure should efficiently support traversals among the items.
In a concurrent environment, traversals to absolute index positions are
not feasible. Consequently, traversals are only supported relatively to
a current position. The current position is maintained by the cursor
concept, where each handle (i.e. thread or process) maintains one in-
dependent cursor position. The first and last cursor positions do not
refer to real items, but are instead used as end markers, i.e. before
the first item or after the last item. Basic operations are InsertAfter
(add a new item after the current), Delete (remove the current item),
Read (inspect the current item), Next (traverse to the item after the
current), First (traverse to the position before the first item). Additional
operations are InsertBefore (add a new item before the current), Previ-
ous (traverse to the item before the current), and Last (traverse to the
position after the last item).

The list is normally implemented using a linked list data structure.
This can be either singly or doubly linked, i.e. either each item knows
only about its successor, or it knows about both its successor and its
predecessor. Even though all implementations support traversals in
both directions, those based on a doubly linked list facilitates signifi-
cantly more efficient backward traversals.

The implementations available of a shared list are:

e A Lock-Free implementation offering singly linked list character-
istics, and unbounded memory usage.

e A Lock-Based implementation offering singly linked list charac-
teristics.

e A Lock-Free implementation offering doubly linked list character-
istics, and bounded memory usage.

179

180 CHAPTER 10. SHARED LIST

e A Lock-Free implementation offering doubly linked list character-
istics, and unbounded memory usage.

e A Lock-Based implementation offering doubly linked list charac-
teristics.

10.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

10.1.1 C

NBLListCreateLF_SU Creates a new instance of a singly linked list ob-
ject using a lock-free implementation. See Section|10.3.1

NBLListCreateLB_S Creates a new instance of a singly linked list ob-
ject using a lock-based implementation. See Section [10.3.2

NBLListCreateLF DB Creates a new instance of a doubly linked list
object using a lock-free implementation. See Section|10.3.3

NBLListCreateLF DU Creates a new instance of a doubly linked list
object using a lock-free implementation. See Section|10.3.4

NBLListCreateLB D Creates a new instance of a doubly linked list ob-
ject using a lock-based implementation. See Section

NBLListInsertBefore Inserts a new element directly before the current
position. See Section [10.4.1

NBLListInsertAfter Inserts a new element directly after the current
position. See Section [10.4.2

NBLListDelete Deletes the element at the current position. See Sec-

tion [10.4.3]

NBLListRead Reads the element at the current position. See Section

10.4.4

NBLListFirst Sets the cursor position to point directly before the first
element. See Section

NBLListLast Sets the cursor position to point directly after the last
element. See Section|[10.4.6

NBLListNext Traverses the cursor position one step forwards. See
Section [10.4.7

NBLListPrevious Traverses the cursor position one step backwards.
See Section

10.1. OVERVIEW 181

10.1.2 C++

namespace NBL {
template <typename T> class List {
// Constructors
static List<T> *CreateLF_SU(int nrOfBlocks);
static List<T> xCreateLB_S();
static List<T> *CreateLF_DB(int nrOfBlocks);
static List<T> *CreateLF_DU(int nrOfBlocks);
static List<T> %CreateLB_D();
// Operations
bool InsertBefore (T xitem);
bool InsertAfter (T xitem);
T xDelete();
T xRead();
void First ();
void Last () ;
bool Next ();
bool Previous();
}i

}i

NBL::List::CreateLF_SU Creates a new instance of a singly linked list
object using a lock-free implementation. See Section|10.3.1

NBL::List::CreateLB_S Creates a new instance of a singly linked list
object using a lock-based implementation. See Section [10.3.2

NBL::List::CreateLF DB Creates a new instance of a doubly linked list
object using a lock-free implementation. See Section|10.3.3

NBL::List::CreateLF DU Creates a new instance of a doubly linked list
object using a lock-free implementation. See Section|10.3.4

NBL::List::CreateLB_D Creates a new instance of a doubly linked list
object using a lock-based implementation. See Section

NBL::List::InsertBefore Inserts a new element directly before the cur-
rent position. See Section [10.4.1

NBL::List::InsertAfter Inserts a new element directly after the current

position. See Section |10.4.2

NBL::List::Delete Deletes the element at the current position. See Sec-
tion

NBL::List::Read Reads the element at the current position. See Sec-
tion

NBL::List::First Sets the cursor position to point directly before the
first element. See Section [10.4.5]

182 CHAPTER 10. SHARED LIST

NBL::List::Last Sets the cursor position to point directly after the last
element. See Section [10.4.6]

NBL::List::Next Traverses the cursor position one step forwards. See

Section [10.4.7]

NBL::List::Previous Traverses the cursor position one step backwards.

See Section [10.4.8l

10.2 Examples
10.2.1 C

NBLListRoot =*list;
int items[4]={1,2,3,4};

void main (int argc, char **argv)
{
/* Create a lock-free linked list data object, with maximum
space for appr. 100 items =*/
list = NBLListCreateLF_DB(100);

/* Creating and running the threads ... x/

/* Freeing the memory that the list object used =/
NBLListFree (list);
1ist=NULL;

void Threadl ()

{
NBLList =xhandle;
/* Get the local handle to the shared linked list =*/
handle=NBLListGetHandle (list) ;

/* Insert an item in the list, i.e. putting items[3] on the
list «/
NBLListInsertAfter (handle, & (items([3]));

/+* Free the local handle to the shared linked list =/
NBLListFreeHandle (handle) ;

void Thread2 ()

{
int *item;
NBLList =xhandle;

10.2. EXAMPLES 183

/+ Get the local handle to the shared linked list =*/
handle=NBLListGetHandle (list) ;

/* Enlist another item on the list, i.e. putting items[2] on
the list =/
NBLListInsertAfter (handle, & (items[2]));

/* Deleting an item from the list i.e. we should get a
pointer to items[3] or items[2] depending of which thread
was the fastest x/

item = NBLListDelete (handle);

/* Free the local handle to the shared linked list =/
NBLListFreeHandle (handle) ;

void Thread3 ()

10.2.2 C++

NBL::List<int> *list;
int items[4]={1,2,3,4};

void main (int argc, char xxargv)

{

/* Create a lock-free linked list data object, with maximum
space for appr. 100 items =/
list = NBL::List<int>::CreatelLF_DB(100);

/% Creating and running the threads ... x/

/* Freeing the memory that the list object used */
delete 1list;
1ist=NULL;

void Threadl ()
{

/* Insert an item in the list, i.e. putting items[3] on the
list =/
list->InsertAfter (& (items[3]));

void Thread?2 ()
{

int *item;

184 CHAPTER 10. SHARED LIST

/* Enlist another item on the list, i.e. putting items[2] on

the list */
list->InsertAfter (& (items[2]));

/* Deleting an item from the list i.e. we should get a
pointer to items[3] or items[2] depending of which thread

was the fastest =/
item = list->Delete();

void Thread3 ()

10.3. CREATION 185

10.3 Creation

The following functions are used to create a new linked list shared data
structure.

10.3.1 NBLListCreateLF _SU

Creates a new instance of a singly linked list object using a lock-free
implementation.

The amount of memory occupied at any moment in time for storing
the items is unbounded.

Syntax C

NBLListRootx NBLListCreateLF_SU (
int nrOfBlocks
)i

Syntax C++
template <typename T> class
static NBL::List<T>* NBL::List<T>::CreateLF_SU(

int nrOfBlocks = 1000
)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used

for the implementation of the list. This measures approxi-

mately the number of items that can be stored into the list:

nrOfBlocks > n+ N x5, where n=nrOfltems, N=nrOfThreads
Return Values

If successful, the function returns a pointer to a new instance of a
linked list object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

186 CHAPTER 10. SHARED LIST

10.3.2 NBLListCreateLB_S
Creates a new instance of a singly linked list object using a lock-based

implementation.

Syntax C

NBLListRoot* NBLListCreatelLB_S(
)i

Syntax C++

template <typename T> class
static NBL::List<T>x NBL::List<T>::CreatelLB_S (
)

Parameters

Return Values

If successful, the function returns a pointer to a new instance of a
linked list object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

10.3. CREATION 187

10.3.3 NBLListCreateLF DB

Creates a new instance of a doubly linked list object using a lock-free
implementation.

The amount of memory occupied at any moment in time for storing
the items is bounded.

Syntax C

NBLListRoot* NBLListCreateLF_DB (
int nrOfBlocks
)i
Syntax C++
template <typename T> class
static NBL::List<T>x NBL::List<T>::CreatelLF_DB (

int nrOfBlocks = 1000
)i

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used
for the implementation of the list. This measures approxi-
mately the number of items that can be stored into the list:
nrOfBlocks = n+ N? % 14 , where n=nrOfltems, N=nrOfThreads
On-line Parameters

PARAM _BACK _OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a
linked list object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

188 CHAPTER 10. SHARED LIST

10.3.4 NBLListCreateLF DU

Creates a new instance of a doubly linked list object using a lock-free
implementation.

The amount of memory occupied at any moment in time for storing
the items is unbounded.

Syntax C

NBLListRoot* NBLListCreateLF_DU (
int nrOfBlocks
)i
Syntax C++
template <typename T> class
static NBL::List<T>x NBL::List<T>::CreatelLF_DU (

int nrOfBlocks = 1000
)

Parameters

nrOfBlocks
[in] The maximum number of memory blocks that can be used

for the implementation of the list. This measures approxi-

mately the number of items that can be stored into the list:

nrOfBlocks > n+ N 8 , where n=nrOfltems, N=nrOfThreads
On-line Parameters

PARAM BACK_OFF_TYPE {BOT_LINEAR, BOT_EXPONENTIAL}
PARAM_BACK_OFF_INIT
PARAM_BACK_OFF_MAX

For detailed parameter descriptions see Section

Return Values

If successful, the function returns a pointer to a new instance of a
linked list object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

10.3. CREATION 189

10.3.5 NBLListCreateLB D

Creates a new instance of a doubly linked list object using a lock-based
implementation.

Syntax C

NBLListRoot* NBLListCreateLB_D (
)i

Syntax C++

template <typename T> class
static NBL::List<T>x NBL::List<T>::CreatelLB_D (
)i

Parameters

Return Values

If successful, the function returns a pointer to a new instance of a
linked list object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

190 CHAPTER 10. SHARED LIST

10.4 Operations

10.4.1 NBLListInsertBefore

Inserts a new item directly before the current cursor position. If suc-
cesful, then positions the cursor to the newly inserted item.

Syntax C

int NBLListInsertBefore (
NBLList* handle,
voidx item

)i
Syntax C++

template <typename T> class
bool NBL::List<T>::InsertBefore
T+ item

)i
Parameters
handle
[in] A pointer to a local handle of a linked list object instance.

item
[in] Pointer to the item to insert in the list. This should point
to a memory resident structure which stays valid after the
function call.

Return Values

If successful, the function returns true. Otherwise the list was full (i.e.
out of memory) and the function returns false.

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all inserted items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

10.4. OPERATIONS 191

10.4.2 NBLListInsertAfter

Inserts a new item directly after the current cursor position. If succes-
ful, then positions the cursor to the newly inserted item.

Syntax C

int NBLListInsertAfter(
NBLList+ handle,
voidx item

)i

Syntax C++

template <typename T> class
bool NBL::List<T>::InsertAfter (

T+ item
)

Parameters

handle
[in] A pointer to a local handle of a linked list object instance.

item
[in] Pointer to the item to insert in the list. This should point
to a memory resident structure which stays valid after the
function call.

Return Values

If successful, the function returns true. Otherwise the list was full (i.e.
out of memory) and the function returns false.

Remarks

Only the pointers to the new items are copied, which means that the
user has to provide some kind of memory management system to be
able to keep all inserted items valid.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

192 CHAPTER 10. SHARED LIST

10.4.3 NBLListDelete

Removes the item at the current cursor position from the linked list.

Syntax C

void* NBLListDelete (
NBLList* handle
)i

Syntax C++
template <typename T> class

Tx NBL::List<T>::Delete(
)

Parameters

handle
[in] A pointer to a local handle of a linked list object instance.

Return Values

If successful, the function returns a pointer to the item that was re-
moved from the list. Otherwise the item was already deleted or the
cursor position invalid, and the function returns NULL.

Remarks

The actual item is not deleted itself by this function, and thus freeing
and memory management has to be handled by the calling function.

Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

10.4. OPERATIONS 193

10.4.4 NBLListRead

Returns the item at the current cursor position in the linked list.

Syntax C

void* NBLListRead (
NBLList* handle
)i

Syntax C++
template <typename T> class

Tx NBL::List<T>::Read(
)

Parameters
handle
[in] A pointer to a local handle of a linked list object instance.
Return Values

If successful, the function returns a pointer to the item at the current
cursor position. Otherwise the item has been deleted or the cursor
position was invalid, and the function returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

194 CHAPTER 10. SHARED LIST

10.4.5 NBLListFirst

Sets the current cursor position to point directly before the first item in
the linked list.

Syntax C

void NBLListFirst (
NBLList* handle
)

Syntax C++

template <typename T> class
void NBL::List<T>::First (
)i

Parameters

handle

[in] A pointer to a local handle of a linked list object instance.

Return Values
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

10.4. OPERATIONS 195

10.4.6 NBLListLast

Sets the current cursor position to point directly after the first item in
the linked list.

Syntax C

void NBLListLast (
NBLList* handle
)

Syntax C++

template <typename T> class
void NBL::List<T>::Last (
)i

Parameters
handle
[in] A pointer to a local handle of a linked list object instance.
Return Values
Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

196 CHAPTER 10. SHARED LIST

10.4.7 NBLListNext

Traverses the current cursor position one step forwards.

Syntax C

int NBLListNext (
NBLList* handle
)i

Syntax C++
template <typename T> class

bool NBL::List<T>: :Next (
)

Parameters

handle
[in] A pointer to a local handle of a linked list object instance.

Return Values

If successful, the function returns true. Otherwise the cursor position
has reached or was already positioned directly after the last item in the
linked list.

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

10.4. OPERATIONS 197

10.4.8 NBLListPrevious

Traverses the current cursor position one step forwards.

Syntax C

int NBLListPrevious (
NBLList* handle
)i

Syntax C++
template <typename T> class

bool NBL::List<T>::Previous (
)

Parameters

handle
[in] A pointer to a local handle of a linked list object instance.

Return Values

If successful, the function returns true. Otherwise the cursor position
has reached or was already positioned directly before the first item in
the linked list.

Remarks
Requirements

Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

198 CHAPTER 10. SHARED LIST

Chapter 11

Shared Snapshot

The Snapshot abstract data type is a collection of items where each
item can be updated with new contents individually but read all to-
gether. The items are called components and are indexed uniquely.
Basic operations are Scan (read the contents of all items) and Update
(update an individual item with new contents).

The implementations available of a shared snapshot are:

e A Wait-Free implementation offering single scanner and single up-
dater support.

e A Wait-Free implementation offering single scanner and multiple
updaters support.

e A Wait-Free implementation for real-time systems offering single
scanner and multiple updaters support.

e A Lock-Based implementation.

11.1 Overview

Here is a list of supported functions and macros together with the cor-
responding description.

11.1.1 C

NBLSnapshotCreateWF_SS Creates a new instance of a snapshot ob-
ject using a wait-free implementation. See Section|11.3.1

NBLSnapshotCreateWF_SM Creates a new instance of a snapshot ob-
ject using a wait-free implementation. See Section|(11.3.2

199

200 CHAPTER 11. SHARED SNAPSHOT

NBLSnapshotCreateWFR_SM Creates a new instance of a snapshot
object using a wait-free implementation for real-time systems. See
Section

NBLSnapshotCreateLB Creates a new instance of a snapshot object
using a lock-based implementation. See Section[11.3.4]

NBLSnapshotScan Scans the components of the snapshot object. See
Section|(11.4.1

NBLSnapshotUpdate Updates a single component of the snapshot ob-
ject. See Section (11.4.2

11.1.2 C++

namespace NBL {
template <typename T> class Snapshot {
// Constructors
static Snapshot<T>x CreateWF_SS (int components);
static Snapshot<T>x CreateWF_SM(int components, int writers
)i
static Snapshot<T>x CreateWFR_SM(int components, int =
cycles);
static Snapshot<T>* CreatelB (int components) ;
// Operations
void Scan (T xvalues([]);
void Update (int component, T xvalue);
}i
}i

NBL::Snapshot::CreateWF_SS Creates a new instance of a snapshot
object using a wait-free implementation. See Section|11.3.1

NBL::Snapshot::CreateWF_SM Creates a new instance of a snapshot
object using a wait-free implementation. See Section|11.3.2

NBL::Snapshot::CreateWFR_SM Creates a new instance of a snapshot
object using a wait-free implementation for real-time systems. See

Section [11.3.3]

NBL::Snapshot::CreateLB Creates a new instance of a snapshot ob-
ject using a lock-based implementation. See Section|11.3.4

NBL::Snapshot::Scan Scans the components of the snapshot object.

See Section [11.4.1]

NBL::Snapshot::Update Updates a single component of the snapshot
object. See Section|11.4.2

11.2. EXAMPLES 201

11.2 Examples

11.2.1 C

NBLSnapshotRoot =*snapshot;
int values[4]={1,2,3,4};

void main (int argc, char xxargv)

{
/+ Create a wait-free snapshot object with 4 components =/
snapshot = NBLSnapshotCreateWF_SS (4);

/* Creating and running the threads ... %/

/* Freeing the memory that the snapshot used */
NBLSnapshotFree (snapshot) ;
Snapshot=NULL;

void Threadl ()

{
NBLSnapshot =xhandle;
/% Get the local handle to the shared snapshot =/
handle=NBLSnapshotGetHandle (snapshot) ;

/% Scan the snapshot and get an atomic view of all components
*/
NBLSnapshotScan (handle, values) ;

/* Free the local handle to the shared snapshot =*/
NBLSnapshotFreeHandle (handle) ;

void Thread?2 ()

{
NBLSnapshot =xhandle;
/% Get the local handle to the shared Snapshot =/
handle=NBLSnapshotGetHandle (snapshot) ;

/+ Update component nr 0 with the value 5 */
NBLSnapshotUpdate (handle, 0, 5) ;

/* Free the local handle to the shared Snapshot =*/
NBLSnapshotFreeHandle (handle) ;

void Thread3 ()

202 CHAPTER 11. SHARED SNAPSHOT

11.2.2 C++

NBL: : Snapshot<int> *snapshot;
int values[4]={1,2,3,4};

void main (int argc, char xxargv)

{

/* Create a wait-free snapshot object with 4 components =*/
snapshot = NBL::Snapshot<int>::CreateWF_SS(4);

/* Creating and running the threads ... x/

/* Freeing the memory that the snapshot used */
delete snapshot;
snapshot=NULL;

void Threadl ()
{

/* Scan the snapshot and get an atomic view of all components
*/

snapshot—>Scan (values) ;

void Thread2 ()

{
/* Update component nr 0 with the value 5 */

snapshot->Update (0, 5) ;

void Thread3 ()

11.3. CREATION 203

11.3 Creation

The following functions are used to create a new Snapshot shared data
structure.

11.3.1 NBLSnapshotCreateWF_SS

Creates a new instance of a snapshot object using a wait-free imple-
mentation.

The implementation supports concurrency up to a single scanner
and a single updater per each component.

Syntax C

NBLSnapshotRoot* NBLSnapshotCreateWF_SS (
int components

)i
Syntax C++

template <typename T> class

static NBL::Snapshot<T>% NBL::Snapshot<T>::CreateWF_SS (
int components

)i

Parameters

components

[in] The number of components that the snapshot should consist of.

Return Values
If successful, the function returns a pointer to a new instance of a
snapshot object. Otherwise, it returns NULL.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use 1ibNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

204 CHAPTER 11. SHARED SNAPSHOT

11.3.2 NBLSnapshotCreateWF_SM

Creates a new instance of a snapshot object using a wait-free imple-
mentation.

The implementation supports concurrency up to a single scanner
and multiple updaters per each component.

Syntax C

NBLSnapshotRoot* NBLSnapshotCreateWF_SM (
int components,
int writers

)i

Syntax C++

template <typename T> class

static NBL: :Snapshot<T>x NBL: :Snapshot<T>::CreateWF_SM (
int components,

int writers

)i
Parameters

components
[in] The number of components that the snapshot should consist of.
writers
[in] The maximum number of concurrent updaters to each component.
Return Values
If successful, the function returns a pointer to a new instance of a
snapshot object. Otherwise, it returns NULL.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

11.3. CREATION 205

11.3.3 NBLSnapshotCreateWFR _SM

Creates a new instance of a snapshot object using a wait-free imple-
mentation for real-time systems.

The implementation supports concurrency up to a single scanner
and multiple updaters per each component.

Syntax C

NBLSnapshotRoot* NBLSnapshotCreateWFR_SM (
int components,
int =xcycles,

)i

Syntax C++

template <typename T> class

static NBL: :Snapshot<T>x NBL: :Snapshot<T>::CreateWFR_SM (
int components,

int =xcycles,

)i
Parameters

components
[in] The number of components that the snapshot should consist of.

cycles
[in] Array that gives the number of memory cells necessary for
each component respectively.

Return Values

If successful, the function returns a pointer to a new instance of a
snapshot object. Otherwise, it returns NULL.

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

206 CHAPTER 11. SHARED SNAPSHOT

11.3.4 NBLSnapshotCreateLB

Creates a new instance of a snapshot object using a lock-based imple-
mentation.

Syntax C

NBLSnapshotRoot* NBLSnapshotCreatelB (
int components

)i
Syntax C++

template <typename T> class
static NBL::Snapshot<T>* NBL: :Snapshot<T>::CreatelB (
int components

)i
Parameters

components

[in] The number of components that the snapshot should consist of.

Return Values
If successful, the function returns a pointer to a new instance of a
snapshot object. Otherwise, it returns NULL.
Remarks
Requirements
Header: Declared in Noble.h; include Noble.h.
Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

11.4. OPERATIONS 207

11.4 Operations
11.4.1 NBLSnapshotScan

Scans the components of the snapshot data structure.

Syntax C

void NBLSnapshotScan (
NBLSnapshot* handle,
voidx*x values

)i

Syntax C++

template <typename T> class
void NBL: :Snapshot<T>::Scan (

Tx* values
)

Parameters

handle
[in] A pointer to a local handle of a snapshot object instance.

values
[out] Pointer to an srray that will contain pointers to the value
objects for each component respectively.

Return Values

Remarks

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

208 CHAPTER 11. SHARED SNAPSHOT

11.4.2 NBLSnapshotUpdate

Updates a single component of the snapshot data structure.

Syntax C

void NBLSnapshotUpdate (
NBLSnapshot* handle,
int component,
void xvalue

)i
Syntax C++

template <typename T> class
void NBL: :Snapshot<T>: :Update (
int component,
T xvalue
)

Parameters

handle

[in] A pointer to a local handle of a snapshot object instance.
handle

[in] Index of the component which should be updated.
value

[in] A pointer to the value object.

Return Values

Remarks

Only the pointer of the value is copied to the component, not the actual
value object.

Requirements

Header: Declared in Noble.h; include Noble.h.

Library: Use libNOBLE.a (Unix) resp. Noble.lib (Windows).

See Also

Chapter 12

Configuration

12.1 Memory Allocation

These functions enable the user to change the memory allocation pro-
cedures used by NOBLE. The default memory allocation functions are
the system calls malloc resp. free.

Here is a list of supported functions and macros together with the
corresponding description.

NBLSetFunctionGlobalMemoryAlloc Changes the memory allocation
function that NOBLE uses.

NBLSetFunctionGlobalMemoryFree Changes the memory free func-
tion that NOBLE uses.

NBLSetFunctionLocalMemoryAlloc Changes the memory allocation
function that NOBLE uses.

NBLSetFunctionLocalMemoryFree Changes the memory free func-
tion that NOBLE uses.

Syntax

void NBLSetFunctionGlobalMemoryAlloc (
void x(xalloc) (int size)

)

void NBLSetFunctionGlobalMemoryFree (
void (*free) (void *mem)

)i

void NBLSetFunctionLocalMemoryAlloc (
void x(*alloc) (int size)

209

210 CHAPTER 12. CONFIGURATION

)i

void NBLSetFunctionLocalMemoryFree (
void (xfree) (void *mem)

)
12.2 Mutual Exclusion

These functions enable the user to change the mutex handling used by
NOBLE. The default mutex functions are based on spin-locks.

Here is a list of supported functions and macros together with the
corresponding description.

NBLSetFunctionMutexCreate Changes the mutex creation function
that NOBLE uses.

NBLSetFunctionMutexDelete Changes the mutex deletion function
that NOBLE uses.

NBLSetFunctionMutexWait Changes the mutex wait function that NO-
BLE uses.

NBLSetFunctionMutexTryWait Changes the mutex trywait function
that NOBLE uses.

NBLSetFunctionMutexSignal Changes the mutex signal function that
NOBLE uses.

NBLSetFunctionSemaphoreCreate Changes the semaphore creation
function that NOBLE uses.

NBLSetFunctionSemaphoreDelete Changes the semaphore deletion
function that NOBLE uses.

NBLSetFunctionSemaphoreWait Changes the semaphore wait func-
tion that NOBLE uses.

NBLSetFunctionSemaphoreTryWait Changes the semaphore trywait
function that NOBLE uses.

NBLSetFunctionSemaphoreSignal Changes the semaphore signal func-
tion that NOBLE uses.

Syntax

void NBLSetFunctionMutexCreate (
void * (xcreate) ()
)

12.3. EXAMPLES 211

void NBLSetFunctionMutexDelete (
void (*del) (void *mutex)

)i

void NBLSetFunctionMutexWait (
void (*wait) (void smutex)

)i

void NBLSetFunctionMutexTryWait (
int (xtrywait) (void *mutex)
)i

void NBLSetFunctionMutexSignal (
void (xsignal) (void xmutex)

)i

void NBLSetFunctionSemaphoreCreate (
void * (xcreate) (int init)

)i

void NBLSetFunctionSemaphoreDelete (
void (*del) (void *sem)
)

void NBLSetFunctionSemaphoreWait (
vold (*wait) (void =sem)

)i

void NBLSetFunctionSemaphoreTryWait (
int (xtrywait) (void xsem)

)i

void NBLSetFunctionSemaphoreSignal (
void (*signal) (void xsem)
)i

12.3 Examples

#include <semaphores.h>

void *CreateSem()

{
sem_t *xsem;
sem=NBLMalloc (sizeof (sem_t));
sem_init (sem,1,1);
return sem;

vold DeleteSem (void =*sem)

212 CHAPTER 12. CONFIGURATION

sem_destroy (sem) ;
NBLFree (sem) ;

void WaitSem (void xsem)

{

sem_wait (sem) ;

void SignalSem(void xsem)

{

sem_post (sem) ;

void main (int argc, char **argv)

{
/* Register the special mutex operations for NOBLE to use x/
NBLSetFunctionSemaphoreCreate (CreateSem) ;
NBLSetFunctionSemaphoreDelete (DeleteSem) ;
NBLSetFunctionSemaphoreWait (WaitSem) ;
NBLSetFunctionSemaphoreSignal (SignalSem) ;
/* Creating and running the threads ... %/

PARALLEL

SCALABLE SOLUTIONS

Parallel Scalable Solutions AB, Box 916
SE-501 10 BORAS, SWEDEN. info@pss-ab.se www.pss-ab.se

	Introduction
	Getting Started
	C
	C++

	How to read the manual pages
	Technical Information
	Source Code Package
	Usage

	Components
	Availability
	General Functions
	C
	C++
	NBLObjectFree
	NBLObjectGetHandle
	NBLObjectFreeHandle
	NBLObjectGetParameter
	NBLObjectSetParameter

	Multi-Process versus Multi-Thread
	NBLObjectMultiProcessEnable

	On-Line Parameters
	Memory Parameters
	User-Object Memory-Manager Parameters
	Back-Off Parameters
	Priority Queue Parameters
	Dictionary Parameters

	Atomic Word Operations
	Overview
	C
	C++
	Limitations in Functionality

	Examples
	C
	C++

	Creation
	NBLWordCreateWF_B
	NBLWordCreateWF_CASN
	NBLWordCreateLF_LL

	Operations
	NBLWordInit
	NBLWordDeinit
	NBLWordRead
	NBLWordWrite
	NBLWordAdd
	NBLWordSwap
	NBLWordOp
	NBLWordCAS
	NBLWordCASN
	NBLWordLL
	NBLWordVL
	NBLWordSC

	Memory Management
	Overview
	C
	C++

	Creation
	NBLMemoryCreateLF_SLB
	NBLMemoryCreateLF_CSLB
	NBLMemoryCreateLF_HSLB
	NBLMemoryCreateLF_SUU
	NBLMemoryCreateLF_CSUU
	NBLMemoryCreateLF_HSUU
	NBLMemoryCreateLF_MLB
	NBLMemoryCreateLF_CMLB
	NBLMemoryCreateLF_HMLB
	NBLMemoryCreateLF_WLB
	NBLMemoryCreateLF_CWLB
	NBLMemoryCreateLF_HWLB
	NBLMemoryCreateWF_SUU

	Operations
	NBLMemoryAllocBlock
	NBLMemoryAllocClass
	NBLMemoryAllocSize
	NBLMemoryDeleteBlock
	NBLMemoryDeRefLink
	NBLMemoryCopyRef
	NBLMemoryReleaseRef
	NBLMemoryStoreRef
	NBLMemoryCASRef

	Shared Stack
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLStackCreateLF_B
	NBLStackCreateLF_U
	NBLStackCreateLB

	Operations
	NBLStackPush
	NBLStackPop

	Shared Queue
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLQueueCreateWF_SS
	NBLQueueCreateLF_DB
	NBLQueueCreateLF_SB
	NBLQueueCreateLF_DU
	NBLQueueCreateLB

	Operations
	NBLQueueEnqueue
	NBLQueueDequeue
	NBLQueueIsEmpty
	NBLQueueSize

	Shared Deque
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLDequeCreateLF_HB
	NBLDequeCreateLF_HU
	NBLDequeCreateLF_LB
	NBLDequeCreateLB

	Operations
	NBLDequePushLeft
	NBLDequePushRight
	NBLDequePopLeft
	NBLDequePopRight

	Shared Priority Queue
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLPQueueCreateLF_EB
	NBLPQueueCreateLF_EU
	NBLPQueueCreateLB_SD
	NBLPQueueCreateLB_DD
	NBLPQueueCreateLB_E

	Operations
	NBLPQueueInsert
	NBLPQueueDeleteMin
	NBLPQueueFindMin

	Shared Dictionary
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLDictionaryCreateLF_EB
	NBLDictionaryCreateLF_EU
	NBLDictionaryCreateLF_LB
	NBLDictionaryCreateLB_E

	Operations
	NBLDictionaryInsert
	NBLDictionaryUpdate
	NBLDictionaryDelete
	NBLDictionaryFind
	NBL::Dictionary::SetValueMemoryHandler

	Shared List
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLListCreateLF_SU
	NBLListCreateLB_S
	NBLListCreateLF_DB
	NBLListCreateLF_DU
	NBLListCreateLB_D

	Operations
	NBLListInsertBefore
	NBLListInsertAfter
	NBLListDelete
	NBLListRead
	NBLListFirst
	NBLListLast
	NBLListNext
	NBLListPrevious

	Shared Snapshot
	Overview
	C
	C++

	Examples
	C
	C++

	Creation
	NBLSnapshotCreateWF_SS
	NBLSnapshotCreateWF_SM
	NBLSnapshotCreateWFR_SM
	NBLSnapshotCreateLB

	Operations
	NBLSnapshotScan
	NBLSnapshotUpdate

	Configuration
	Memory Allocation
	Mutual Exclusion
	Examples

