
Technical Report no. 2004-10

Wait-Free Reference Counting and Memory Management

Håkan Sundell

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2004

Technical Report in Computing Science at
Chalmers University of Technology and Göteborg University

Technical Report no. 2004-10
ISSN: 1650-3023

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden, 2004

Abstract

We present a practical wait-free implementation of a
garbage collection scheme based on reference counting that
uses atomic primitives which are available in modern com-
puter systems. To the best of our knowledge, this is the first
wait-free algorithm of a reference counting scheme that can
support dynamic concurrent data structures. As all opera-
tions of wait-free algorithms are guaranteed to always fin-
ish in a finite number of their own steps independently of
the other operations’ actions, the new algorithm is espe-
cially suitable for real-time systems where execution time
guarantees are of significant importance. We also present
a wait-free algorithm of a free-list, for supporting concur-
rent allocation and freeing of memory blocks. The new al-
gorithms are linearizable and are compatible to previous
implementations of non-blocking dynamic data structures.

1 Introduction

Reliable methods for concurrent memory management
are fundamental for the design of concurrent dynamic data
structures. Thus, algorithms for concurrent garbage col-
lection have been extensively researched. Most algorithms
are though based on mutual exclusion, and as such the ac-
cess window in time is often limited. This has been ad-
dressed as a significant issue, as for example done by Lev-
anoni and Petrank in [10] where their goal was to minimize
the access constraints. Moreover, mutual exclusion cause
blocking and can consequently incur serious problems as
deadlocks, priority inversion or starvation. These prob-
lems are especially important for real-time systems, and ef-
ficient solutions only exist for uni-processor systems [16].
Some researchers have addressed these problems by intro-
ducing non-blocking synchronization algorithms, which are
not based on mutual exclusion. Lock-free algorithms are
non-blocking, and guarantee that always at least one opera-
tion can progress, independently of the actions taken by the
concurrent operations. Thus, lock-free algorithms can po-
tentially incur starvation, although the other problems with
mutual exclusion are avoided. Wait-free [3] algorithms are
lock-free, and moreover guarantee that all operations can
finish in a finite number of their own steps, regardless of the
actions taken by the concurrent operations.

Valois [19] and Michael and Scott [14] presented a
lock-free memory management scheme based on reference
counting. The main drawback is that re-claimed memory
can not be re-used for arbitrary purposes. Detlefs et al.
[1] presented a lock-free reference counting scheme that
allows arbitrary re-use of the memory but is based on the

CAS21 atomic primitive that is not available in current ar-
chitectures. Michael [11, 12] designed a lock-free2 garbage
collection scheme, and a similar scheme using CAS2 have
been presented by Herlihy et al. [4]. These schemes can
though not be used for designing arbitrary non-blocking dy-
namic data structures, as they only guarantee a fixed number
of references from process owned variables to nodes to be
safe for accessing. Using reference counting, an arbitrary
number of pointers can be guaranteed to be safe, even from
within the data structure itself. Michael has also designed a
general lock-free memory allocation scheme [13] for mem-
ory blocks of arbitrary size, that has to be combined with
a suitable garbage collection scheme for complete memory
management support. Gidenstam et al. [2] have presented a
general lock-free memory allocation scheme using another
approach and with other properties. Hesselink and Groote
[7, 8] have presented a wait-free implementation for mem-
ory management of a set of shared tokens. However, the
solution is very limited3 as it addresses a special access pat-
tern, and can thus not be used for implementing shared data
structures in general. Consequently, several implementa-
tions of lock-free dynamic data structures [18] exist in the
literature, although very few wait-free dynamic data struc-
tures [6] are known to us.

In this paper we present a wait-free algorithm for im-
plementing a concurrent garbage collection scheme based
on reference counting. The algorithm is implemented us-
ing common synchronization primitives that are available
in modern systems. We have also designed a wait-free al-
gorithm for implementing a free-list supporting concurrent
allocation and freeing of fixed-size memory blocks. The
presented memory management scheme can be used in user
applications in a straight-forward manner, and is compatible
to previous implementations of non-blocking dynamic data
structures. In the algorithm description, the precise seman-
tics of the operations are defined and a proof that our imple-
mentation is wait-free and linearizable [5] is also given.

1This operation, also called DCAS in the literature, can atomically up-
date two arbitrary memory words.

2The de-referencing operation of pointers is lock-free, although the ac-
tual garbage collecting step is wait-free.

3The algorithm does not support de-referencing or updating of links
containing pointers to arbitrary objects.

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 1. Shared Memory Multiprocessor Sys-
tem Structure

The rest of the paper is organized as follows. In Section
2 we describe the type of systems that our implementation is
aiming for. The actual algorithms are described in Section
3. In Section 4 we define the precise semantics of the oper-
ations on our implementation, and show the correctness of
our algorithms by proving the wait-free and linearizability
properties. We conclude the paper with Section 5.

2 System Description

A typical abstraction of a shared memory multi-
processor system configuration is depicted in Figure 1.
Each node of the system contains a processor together with
its local memory. All nodes are connected to the shared
memory via an interconnection network. A set of co-
operating tasks is running on the system performing their
respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve
(run) many tasks at a time. The co-operating tasks, possi-
bly running on different processors, use shared data objects
built in the shared memory to co-ordinate and communi-
cate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent
shared memory. The shared memory might not be uni-
formly accessible for all nodes in the system; processors can
have different access times on different parts of the memory.

The shared memory system should support atomic read
and write operations of single memory words, as well as
stronger atomic primitives for synchronization. In this pa-
per we use the Fetch-And-Add (FAA), Compare-And-Swap
(CAS) and the Swap (SWAP) atomic primitives; see Figure
2 for a description. These read-modify-write style of op-
erations are available on most common architectures or can
be easily derived from other synchronization primitives [15]
[9].

3 New Algorithm

The new algorithm for garbage collection is based on ref-
erence counting. For this purpose, we assume that each

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

function SWAP(address:pointer to word, newvalue:word):word
atomic do

oldvalue := *address;
*address := newvalue;
return oldvalue;

Figure 2. The Fetch-And-Add (FAA),
Compare-And-Swap (CAS) and Swap (SWAP)
atomic primitives.

memory block (that possibly represents a node in a dy-
namic data structure) has a reference count field, see Figure
3. Moreover, we assume that this field (i.e. mm_ref) will
be present at each memory block indefinitely, and will thus
also be possible to access on nodes that have been reclaimed
by the memory management scheme.

structure Node
mm_ref: integer /* Initially 1 */
mm_next: pointer to Node
...

Figure 3. The Node structure

The reference counting scheme is using the same inter-
pretation of the reference count variable as the lock-free al-
gorithm by Valois [19] and Michael and Scott [14]. Thus,
the real reference count is the mm_ref value divided by two,
and the even or odd value of mm_ref is used for consis-
tently agreeing on when to reclaim the node.

A basic problem with reference counting arises when
de-referencing pointers. Without mutual exclusion or ex-
otic imaginary multi-word atomic primitives we can not in-
crease the reference count of the de-referenced node at the
same time as de-referencing the pointer. Moreover, with-
out the assumption of indefinitely present mm_ref fields, it
is not possible to verify that the mm_ref fields still exists
while attempting to increment it. Between the de-reference
and the reference count increment statements, it is thus pos-
sible that a concurrent process has removed the last refer-

ence to the node and then reclaimed it. The solution by
Valois [19] is to allow increments of the mm_ref field of
possibly reclaimed nodes and to afterwards verify that the
pointer still points to the same node, otherwise the refer-
ence count is decremented and the de-reference scheme is
repeated. However, the number of repeats is unbounded.

The key idea of our solution is that operations announce
the location of the shared link before attempting to de-
reference the link. Concurrent operations that have changed
the link are obliged to check the possible announcement,
before possibly decrementing the reference count of the
node that was previously pointed to. If the announcement
matches the link, the concurrent operation should then pro-
vide the de-referencing operation with the address of a node
that has a positive reference count and was recently pointed
to from the link. The possible answer from helping is given
back in the same shared variable that was used for announc-
ing the pending de-reference operation.

However, if the same shared variable is used for an-
nouncing several subsequent de-reference operations, it
might be that slow concurrent helping operations have
pending answers that refer to old announcements. As CAS
is used for answering the announcement, it can not verify if
the announcement is old or new if the announcement con-
cerns the very same link, i.e. the CAS can not solve the
ABA problem. In order to avoid this problem, we need to
use a pool of shared variables for announcing, continuously
keeping track of which shared variables that have a pend-
ing CAS from a concurrent helping operation, and only use
shared variables for new announcements that have no pend-
ing CAS attempts for answering.

The following functions are defined for safe handling of
the reference counting:

function DeRefLink(link:pointer to pointer to Node):
pointer to Node

procedure ReleaseRef(node:pointer to Node)

procedure HelpDeRef(link:pointer to pointer to Node)

The DeRefLink operation, see Figure 4, de-references a
given link and returns the corresponding address of a node
with an incremented reference count. The algorithm first
announces the link in a free shared variable in lines D1-
D3. It de-references the link in line D4 and increases the
reference count of the corresponding node in line D5. In
line D6 it removes the announcement and simultaneously
detects a possible answer from helping. If an answer was
received it will decrement the reference count of the possi-
bly reclaimed node in line D8 by calling the ReleaseRef
operation, and instead uses the answer for returning.

The ReleaseRef operation, see Figure 4, decrements
the reference count of a given node. If all references to
the node has been removed, the node will eventually be

union LinkOrPointer
_: pointer to pointer to Node
_: pointer to Node

/* Global variables */
annReadAddr[NR_THREADS][NR_THREADS]: union LinkOrPointer
annIndex[NR_THREADS]: integer
annBusy[NR_THREADS][NR_THREADS]: integer

/* Local variables */
threadId: integer /* Unique and fixed number for each thread between
0 and NR_THREADS-1 */

n1,n2,node: pointer to Node
index,id: integer

function DeRefLink(link:pointer to pointer to Node): pointer to Node
D1 Choose index such that annBusy[threadId][index]=0
D2 annIndex[threadId]:=index;
D3 annReadAddr[threadId][index]:=link;
D4 node:=*link;
D5 if node�=⊥ then FAA(&node.mm_ref,2);
D6 n1:=SWAP(&annReadAddr[threadId][index],⊥);
D7 if n1 �= link then
D8 if node�=⊥ then ReleaseRef(node);
D9 node:=n1;
D10 return node;

procedure ReleaseRef(node:pointer to Node)
R1 FAA(&node.mm_ref,-2);
R2 if node.mm_ref=0 and CAS(&node.mm_ref,0,1) then
R3 Recursively call ReleaseRef for all held references by node
R4 FreeNode(node);

procedure HelpDeRef(link:pointer to pointer to Node)
H1 for id:=0 to NR_THREADS-1 do
H2 index:=annIndex[id];
H3 if annReadAddr[id][index]=link then
H4 FAA(&annBusy[id][index],1);
H5 node:=DeRefLink(link);
H6 if not CAS(&annReadAddr[id][index],link,node) then
H7 if node �=⊥ then ReleaseRef(node);
H8 FAA(&annBusy[id][index],-1);

Figure 4. Reference counting functions

reclaimed (by either this operation or by pending concur-
rent ReleaseRef operations). The algorithm decrements
the reference count in line R1. In line R2 it detects if the
reference count is zero and tries to agree on whether this
operation should reclaim the node. If the node should be
reclaimed, it releases all references from links that is con-
tained in the structure of this node in line R3 and then re-
claims the node by calling the FreeNode operation.

The HelpDeRef procedure, see Figure 4, tries to help
concurrent DeRefLink operations by giving them recent re-
sults of de-referencing the corresponding given link. The
algorithm checks the announcement variables for each pro-
cess in lines H2-H3 in order detect if the given link matches
the announcement. If the announcement matches, it first
makes sure that this announcement variable can not be
reused for subsequent announcements, by increasing the
busy count in line H4. In line H5 it gets the recent de-
reference result of the link by calling the DeRefLink op-
eration. If it fails to answer the announcement by using the
CAS in line H6, the corresponding node’s reference count
is decreased by calling the ReleaseRef operation. After
possibly helping the announcement, it releases its claim on
the announcing variable by decrementing the corresponding
busy count in line H8.

3.1 Allocating and freeing nodes

In order to be able to dynamically allocate and free mem-
ory blocks for representing the nodes in a dynamic data
structure, we need to store information about the free nodes
in a shared data structure. A solution that has been used by
Valois [19] and others, is to keep the free nodes in a linked
list structure (i.e. free-list) and update the head pointer us-
ing CAS. One problem with this approach is that during an
attempt to remove the first item in the list, the CAS oper-
ation can not verify if the mm_next field of the node has
been updated (as could have happened if the node has been
removed and then later re-inserted) while possibly updating
the head pointer. As we are using reference counting for
garbage collection, we can increase the reference count di-
rectly before reading the mm_next field and thus make sure
that the node can not be reclaimed.

As all concurrent alloc and free operation will operate
on the same head pointer using CAS, a successful CAS for
one operation will mean that all the other concurrent CAS
attempts will possibly fail. Thus, some operations might
need to retry the CAS with an potentially unbounded num-
ber of attempts.

The key ideas of our solution are to force the operations
to work on different parts of the global free-list and use
helping mechanisms. Each process has a shared variable
for announcing the need of a free node. For the first suc-
cessful CAS attempt to remove a node from the free-list,

each alloc operation has to possibly help another process.
The specific process to help is incremented in a round-robin
manner, so that eventually every process will have got po-
tential help. Before possibly conflicting with CAS attempts
on the free-list, each free operation also has to possibly help
another process with allocation. In order to avoid conflicts
with concurrent free operations, each process operates on
two separate free-lists. Moreover, in order to avoid conflicts
with concurrent alloc operations, all alloc operations oper-
ate on the same free-list, thus always leaving one free-list
free of conflicts for the corresponding free operation.

In the following description of our algorithm, we as-
sume for simplicity reasons that there will always be enough
nodes in the free-list, and thus the allocation can never fail4.
The following functions are defined for safe handling of al-
locating and freeing nodes:

function AllocNode():pointer to Node
procedure FreeNode(node: pointer to Node)

The AllocNode operation, see Figure 5, returns a newly
allocated node with a reference count indicating one ac-
tive reference. The algorithm first reads in line A1-A2
which specific process to eventually help. It then repeat-
edly checks if that process was already helped in line A4
or instead tries to remove the first node in the active free-
list. If the specified process has been helped, it resets the
announcement variable in line A4 and returns the node with
an adjustment of the reference count that enables future re-
claiming. When trying to remove the first node in the active
free-list, it first checks if the current free-list is empty in line
A7 and then consequently changes the active free-list to the
next free-list in order. If the active free-list is not empty,
it first increases the reference count of the first node in the
free-list in line A9, and tries to remove the node from the
free-list using CAS in line A10. If the CAS in line A10
succeeds, the algorithm has to decide whether to use the
removed node or to instead possibly give it to the process
targeted for helping. If the process to be helped has not al-
ready been helped (by this or another process) and the CAS
in line A12 succeeded, then the targeted process has got the
removed node and the algorithm makes another try to al-
locate a new node. Thus, in line A14 and A16 we know
that the targeted process has been helped in some way, and
therefore increase the helpCurrent shared variable so that
other processes will eventually get helped by subsequent
AllocNode or FreeNode operation invocations. If the re-
moved node was not given to the targeted process, we return

4The modification to the algorithm to also detect the out of memory
condition is very simple. By counting the number of retries in the A3-A18
loop, we know that there is no memory left if the number of retries is more
than a certain threshold. This threshold is given by the maximum number
of retries taken such that the algorithm is wait-free (in the case of available
memory) and thus depends on the number of participating threads.

/* Global variables */
currentFreeList: integer; /* Initially 0 */
freeList[NR_THREADS*2]: pointer to Node;
/* Initially freeList[0] points to the linked list of all available Nodes */
/* and freeList[1...NR_THREADS-1] is initialized to ⊥ */
helpCurrent; integer; /* Initially 0 */
annAlloc[NR_THREADS]: pointer to Node; /* Initially ⊥ */

function FixRef(node:pointer to Node, fix:integer):pointer to Node
FAA(&node.mm_ref,fix);
return node;

function AllocNode():pointer to Node
A1 helped:=false;
A2 helpId:=helpCurrent;
A3 while true do
A4 if annAlloc[threadId] �=⊥ then return

FixRef(SWAP(&annAlloc[threadId],⊥),-1);
A5 current:=currentFreeList;
A6 node:=freeList[current];
A7 if node=⊥ then CAS(¤tFreeList,current,

(current+1)%(NR_THREADS*2));
A8 else
A9 FAA(&node.mm_ref,2);
A10 if CAS(&freeList[current],node,node.mm_next) then
A11 if not helped and annAlloc[helpId]=⊥ then
A12 if CAS(&annAlloc[helpId],⊥,node) then
A13 helped:=true;
A14 CAS(&helpCurrent,helpId,

(helpId+1)%NR_THREADS);
A15 continue;
A16 CAS(&helpCurrent,helpId,

(helpId+1)%NR_THREADS);
A17 return FixRef(node,-1);
A18 else ReleaseRef(node);

procedure FreeNode(node: pointer to Node)
F1 helpId:=helpCurrent;
F2 CAS(&helpCurrent,helpId,(helpId+1)%NR_THREADS);
F3 if not CAS(&annAlloc[helpId],⊥,node) then
F4 current:=currentFreeList;
F5 if current≤threadId or current>(NR_THREADS+threadId)

then index:=NR_THREADS+threadId;
F6 else index:=threadId;
F7 while true do
F8 node.mm_next:=freeList[index];
F9 if CAS(&freeList[index],node.mm_next,node) then

break;
F10 index:=(index+NR_THREADS)%(NR_THREADS*2);

Figure 5. Management of the node free-list.

the node in line A17 and adjust its reference count to enable
future reclaiming. If the CAS in line A10 failed, the algo-
rithm calls ReleaseRef in line A18 on the node that failed
to be removed (because it was no longer the first node or
maybe removed) and then makes another try to allocate a
new node.

The FreeNode operation, see Figure 5, frees the given
node. The algorithm first reads in line F1 which specific
process to eventually help, and then increase the helpCur-
rent shared variable in line F2 so that other processes will
eventually get helped by subsequent AllocNode or FreeN-
ode invocations. If the CAS succeeds in line F3, the tar-
geted process has been helped and the algorithm has fin-
ished. Otherwise, the algorithm decides in lines F4-F6
which of the two possible (for this process) free-lists that
is likely to not conflict with concurrent AllocNode invoca-
tions. The algorithm then repeatedly tries to insert the node
in lines F8-F9 by updating the head pointer of the current
free-list using CAS. If the CAS in line F9 succeeds, the al-
gorithm is done. Otherwise it chooses the free-list with the
other index and retries to insert the node in that free-list.

3.2 Usage for dynamic data structures

In order to be used safely, the presented memory man-
agement operations have to be used with care according to
well-defined rules. In order for the DeRefLink operation to
work correctly, every operation that changes a shared link
must always call the HelpDeRef operation on that link, be-
fore eventually calling ReleaseRef on the node that was
previously pointed to by the link. In order to avoid mem-
ory leakage, for each AllocNode or DeRefLink call there
should be a matching ReleaseRef call. Thus, the FreeN-
ode operation should never be called directly by the user
application. For increasing the reference count when copy-
ing shared pointers, the FixRef(node,2) operation should be
used. Direct write operations to links with an address of
a reference counted node, may only be done if the pre-
vious value of the link is known to be NULL and there
is no concurrent updates pending on that link. Otherwise
the update must be done using CAS, and if successful the
HelpDeRef must be called before calling ReleaseRef on
the old value of the link. See Figure 6 for a possible sub-
stitute for the CAS calls in non-blocking algorithms of dy-
namic data structures. Consequently, the algorithm follows
common user models for concurrent reference counting as
for example the one by Detlefs et al. [1], and is therefore
compatible to previous implementations of non-blocking
data structures.

function CompareAndSwapLink(link:pointer to pointer to Node,
old:pointer to Node, new:pointer to Node):Boolean

if CAS(link,old,new) then
HelpDeRef(link);
return true;

return false;

Figure 6. Operations for link modifications.

4 Correctness Proof

In this section we present the proof of our algorithm. We
first prove that our algorithm is a linearizable one [5] and
then we prove that it is wait-free. A set of definitions that
will help us to structure and shorten the proof is first ex-
plained in this section. We start by defining the sequential
semantics of our operations and then introduce two defini-
tions concerning concurrency aspects in general.

Definition 1 We denote with Ft the abstract internal state
of the free-list containing free nodes available for allo-
cation at time t. We interpret n ∈ F to be true when
∃x.annAlloc[x] = n ∨ freeList[x]�n, where � means
that there is a connected path through eventual mm_next
pointers that leads to the node. We denote with Ref(p, n)
the number of references registered for process (i.e. thread)
p and node n. We interpret Ref(pcur, n1) = x as that the
current process (pcur) have contributed with an increment
of 2x to the n1.mm_ref field. We denote with Del(n) that
node n will eventually be put in the free-list if all concurrent
operations will run to completion. We denote with l �→n that
link l points to node n. The operations that are of interest
for linearizability are AllocNode(AN), FreeNode(FN),
DeRefLink(DL) and ReleaseRef(RR). The time t1 is
defined as the time just before the atomic execution of the
operation that we are looking at, and the time t2 is defined
as the time just after the atomic execution of the same oper-
ation. In the following expressions that defines the sequen-
tial semantics of our operations, the syntax is S1 : O1, S2,
where S1 is the conditional state before the operation O1,
and S2 is the resulting state after performing the corre-
sponding operation:

∃n1.n1 ∈ Ft1 : AN() = n1, n1 �∈ Ft2∧
Ref(pcur, n1) = 1 (1)

n1 �∈ Ft1 : FN(n1) = ⊥, n1 ∈ Ft2 (2)

Ref(pcur, n1) = x ∧ ∃n1.l1 �→n1 : DL(l1) = n1,

Ref(pcur, n1) = x + 1 (3)

Ref(pcur, n1) = x∧
(x �= 1 ∨ ∃p �=pcur.Ref(p, n1) �= 0) :

RR(n1), Ref(pcur, n1) = x − 1 (4)

Ref(pcur, n1) = 1 ∧ ∀p �=pcur.Ref(p, n1) = 0 :
RR(n1), Ref(pcur, n1) = 0 ∧ Del(n1) (5)

Definition 2 In a global time model each concurrent oper-
ation Op “occupies" a time interval [bOp, fOp] on the lin-
ear time axis (bOp < fOp). The precedence relation (de-
noted by ‘→’) is a relation that relates operations of a pos-
sible execution, Op1 → Op2 means that Op1 ends before
Op2 starts. The precedence relation is a strict partial order.
Operations incomparable under → are called overlapping.
The overlapping relation is denoted by ‖ and is commuta-
tive, i.e. Op1 ‖ Op2 and Op2 ‖ Op1.

Definition 3 In order for an implementation of a shared
concurrent data object to be linearizable [5], for every con-
current execution there should exist an equal (in the sense
of the effect) and valid (i.e. it should respect the semantics
of the shared data object) sequential execution that respects
the partial order of the operations in the concurrent execu-
tion.

Lemma 1 The address of a pointer to a link (i.e. pointer to
a node) and a pointer to a node can never be equal.

Proof: The only possibility for equivalence is that the link
should be the first field of the node structure. However, this
is impossible as a node always starts with the mm_ref field.

�

We will now show the existence and location in execu-
tion history of a point where the concurrent operation can
be viewed as it occurred atomically, i.e. the linearizability
point.

Lemma 2 The DeRefLink operation (DL(l1) = n1),
takes effect atomically at one statement that is executed dur-
ing its invocation.

Proof: Following from Lemma 1 we know that if the op-
eration has been helped by a concurrent HelpDeRef op-
eration (i.e. the CAS in line H6 succeeds with setting

the annReadAddr element to a pointer to node type), then
n1�=link in line D6.

If the operation did not get helped, then surely l1 �→n1

in line D4. As HelpDeRef is only called before the last
reference count is possible removed (and cause Del(n1)),
we know that ¬Del(n1) in line D6 and thus also in line
D4. Surely Ref(pcur, n1) = Ref(pcur, n1)+1 holds after
executing line D5. As we know that no concurrent state-
ment that cares about the absolute reference count has been
executed between line D4 and D5 (the only statement that
cares about absolute reference counts is line R2, which we
know have not executed as it should have executed after a
possible HelpDeRef), we can safely interpret the reference
count increase to have occurred in line D4. Thus, the lin-
earizability point is the read sub-operation of the link in line
D4.

If the operation got helped, we know that line H4 must
have been executed after line D1 and that line H6 must have
been executed before line D6. Thus we can assume that
the operation takes effect (DL(l1) = n1) during the call to
DeRefLink in line D5. If that operation call is also helped,
we can rely on this assumption recursively. As there is a
limited number of processes, and all calls to DeRefLink
are contained in each others invocations (i.e. between line
D1 and line D6 of the helped operations), there must be a
last DeRefLink call that does not get helped. Thus, the
linearizability point is the read sub-operation of the link in
line D4, executed by some concurrent process. �

Lemma 3 The ReleaseRef operation (RR(n1)), takes ef-
fect atomically at one statement that is executed during its
invocation.

Proof: Surely Ref(pcur, n1) = Ref(pcur, n1) − 1 holds
after executing line R1. If ∀p.Ref(p, n1) = 0 after line R1,
we have to show that the node n1 eventually will be freed
(Del(n1)) if all concurrent processes finish their current in-
vocations.

If ∀p.Ref(p, n1) = 0 and the CAS fails in line R2, this
means that n1.mm_ref > 0 because of a concurrent FAA
operation that have executed before the CAS operation in
line R2. These FAA operations must be either from exe-
cuting line D5 or line A9. If mm_ref was increased due to
line D5, then line D8 will call ReleaseRef as HelpDeRef
must have been called (HelpDeRef must have been called
before the reference count was decreased). If mm_ref was
increased due to line A9 then the CAS in line A10 will fail
as n1 is not in the free-list and will call ReleaseRef in
line A18. Thus, for any of the pending or done superfluous
FAA operations the corresponding call to ReleaseRef will
eventually be done, and thus eventually the CAS of the cor-
responding concurrent process in line R2 will succeed. So
we fulfill the condition Del(n1) directly after line R1.

Consequently, the linearizability point will be the FAA
operation in line R1. �

Lemma 4 The AllocNode operation (AN() = n1), takes
effect atomically at one statement that is executed during its
invocation.

Proof: If the SWAP operation in line A4 is executed,
we know that annAlloc[threadId]=n1 and thus n1 ∈ Ft1

at the time t1 just before the SWAP operation, and that
annAlloc[threadId]=⊥ and thus n1 �∈ Ft2 at the time t2 just
after the SWAP operation. As we know that the helping
process must have executed line A12 and thus also line A9,
it must be that Ref(pcur, n1) = 1 also in line A4 of the
current process. Consequently, the linearizability point will
be the SWAP operation in line A4.

If the FixRef function is called in line A17, we know
that the CAS operation in line A10 has succeeded. Thus,
we know that freeList[current]=n1 and thus n1 ∈ Ft1

at the time t1 just before the CAS operation, and that
freeList[current] �� n1 and thus n1 �∈ Ft2 at the time t2
just after the CAS operation. As we know that line A9 have
been executed, it must be that Ref(pcur, n1) = 1 also in
line A10. Consequently, the linearizability point will be the
CAS operation in line A10. �

Lemma 5 The FreeNode operation (FN(n1)), takes ef-
fect atomically at one statement that is executed during its
invocation.

Proof: If the CAS operation in line F3 has succeeded,
we know that annAlloc[helpId]=⊥ and thus n1 �∈ Ft1

at the time t1 just before the CAS operation, and that
annAlloc[helpId]=n1 and thus n1 ∈ Ft2 at the time t2 just
after the CAS operation. Consequently, the linearizability
point will be the CAS operation in line F3.

If the CAS operation in line F9 has succeeded, we know
that freeList[current] �� n1 and thus n1 �∈ Ft1 at the time t1
just before the CAS operation, and that freeList[current]=n1

and thus n1 ∈ Ft2 at the time t2 just after the CAS opera-
tion. Consequently, the linearizability point will be the CAS
operation in line F9. �

Lemma 6 The DeRefLink operation will always terminate
in a finite number of its own steps.

Proof: This is obvious from the algorithm description as it
contains no unbounded loops. �

Lemma 7 The ReleaseRef operation will always termi-
nate in a finite number of its own steps.

Proof: The CAS operation in line R2 guarantees that only
one invocation for a node will execute line R3. As there

are a finite number of nodes, it follows that the number of
recursive calls to ReleaseRef caused by line R3 is also
finite. �

Lemma 8 The HelpDeRef operation will always termi-
nate in a finite number of its own steps.

Proof: This is obvious from the algorithm description as it
contains no unbounded loops. �

Lemma 9 The AllocNode operation will always terminate
in a finite number of its own steps.

Proof: The operation will terminate when it either gets
helped (annAlloc[threadId]�= ⊥) or the CAS in line A10
succeeds and this operation has already helped the process
with number helpId. If the CAS in line A10 fails, this is
because of a concurrent succeeding CAS at either line A10
or line F9.

All concurrent FreeNode operations and AllocNode
operations with a successful CAS in line A10, have or will
make an attempt to help the process with number helpId.
The concurrent FreeNode operation has made an attempt
to help in line F3. Surely, a concurrent AllocNode invo-
cation has made an attempt before its second succeeding
CAS in line A10. This means that, after a certain number
of failed CAS in line A10 of an operation, for every sub-
sequent failed CAS in line A10, there has been an attempt
from a concurrent operation to help the process with number
helpId. As the helpCurrent variable is increased using CAS
for every attempt, all possible values of helpCurrent will
eventually be read as helpId by the concurrent processes in
lines A2 or F1. Thus, an AllocNode invocation that contin-
uously fails the CAS in line A10, will eventually be helped.

�

Lemma 10 The FreeNode operation will always termi-
nate in a finite number of its own steps.

Proof: We have to show that if the CAS in line F3 fails,
there is a limited number of subsequent failing CAS at-
tempts in line F9.

Assume for the worst case scenario that both freeL-
ist[threadId] and freeList[threadId+NR_THREADS] points
to a non-empty list of free nodes. We know for sure that
other concurrent FreeNode invocation can not cause any
conflicts as they operate on separate freeList indices. The
CAS in line F9 can not fail if the freeList with the corre-
sponding used index is empty. If the CAS in line F9 fails, it
must be due to a successful CAS in line A10 by a concurrent
AllocNode invocation. As the number of processes is lim-
ited, there is a limited number of pending CAS calls in line
A10 by concurrent AllocNode invocations that can address

any of the two possibly conflicting freeList indices (threa-
dId or threadId+NR_THREADS). All newly invocated con-
current AllocNode operations will operate on only one pos-
sible index (currentFreeList). If this index changes to be
equal to the other possible conflicting index, the freeList
with the previous index must be empty and thus the CAS in
line F9 will succeed. Thus, the number of subsequent failed
CAS attempts in line F9 is limited. �

Theorem 1 The presented algorithm for concurrent
garbage collection using reference counting and the
algorithm for concurrent allocating and freeing of nodes,
are both linearizable and wait-free.

Proof: According to Lemmas 2, 3, 4 and 5 the DeRefLink ,
ReleaseRef , AllocNode and FreeNode operations take
effect atomically at one statement that is executed within
their invocations. Consequently, the algorithms for these
operations are linearizable according to the given specifica-
tion.

According to Lemmas 6, 7, 8, 9 and 10 the DeRefLink ,
ReleaseRef , HelpDeRef , AllocNode and FreeNode op-
erations will always terminate within a finite number of
their own steps. Consequently, the algorithms for these op-
erations are wait-free. �

5 Conclusions

We have presented the first wait-free algorithm for im-
plementing a garbage collection scheme using reference
counting, that is designed for general usage. We have
also designed an accompanying wait-free algorithm for im-
plementing a free-list supporting concurrent allocation and
freeing of fixed-size memory blocks. The resulting memory
management scheme is implemented using atomic primi-
tives that are available on common platforms. The user in-
terface to the memory management operations is straight-
forward and is compatible to previous non-blocking dy-
namic data structures.

We have made successful attempts to incorporate the
new wait-free memory management scheme in the lock-free
implementation of a priority queue presented in [18]. Pre-
liminary experimental results show asymptotically similar
performance behavior in average compared to the default
lock-free memory management scheme. However, the main
strength of wait-free algorithms is not in high average per-
formance, but rather in reliable execution guarantees that
could be exploited in for example real-time systems.

We believe that our results will trigger and enable future
developments of new algorithms of wait-free dynamic data
structures. We are currently incorporating our results in the
NOBLE [17] software library.

References

[1] D. Detlefs, P. Martin, M. Moir, and G. Steele Jr, “Lock-free
reference counting,” in Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, Aug.
2001.

[2] A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “Allocat-
ing memory in a lock-free manner,” Computing Science,
Chalmers University of Technology, Tech. Rep. 2004-04,
2004.

[3] M. Herlihy, “Wait-free synchronization,” ACM Transactions
on Programming Languages and Systems, vol. 11, no. 1, pp.
124–149, Jan. 1991.

[4] M. Herlihy, V. Luchangco, and M. Moir, “The repeat of-
fender problem: A mechanism for supporting dynamic-
sized, lock-free data structure,” in Proceedings of 16th Inter-
national Symposium on Distributed Computing, Oct. 2002.

[5] M. Herlihy and J. Wing, “Linearizability: a correctness con-
dition for concurrent objects,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 12, no. 3, pp. 463–
492, 1990.

[6] T. Herman and V. Damian-Iordache, “Space-optimal wait-
free queues,” in Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing. ACM
Press, 1997, p. 280.

[7] W. H. Hesselink and J. F. Groote, “Waitfree distributed mem-
ory management by create and read until deletion (CRUD),”
CWI, Amsterdam, Tech. Rep. SEN-R9811, 1998.

[8] ——, “Wait-free concurrent memory management by create
and read until deletion (CaRuD),” Distributed Computing,
vol. 14, no. 1, pp. 31–39, Jan. 2001.

[9] P. Jayanti, “A complete and constant time wait-free imple-
mentation of cas from ll/sc and vice versa,” in DISC 1998,
1998, pp. 216–230.

[10] Y. Levanoni and E. Petrank, “A scalable reference counting
garbage collector,” Department of Computer Science, Tech-
nion, Haifa, Israel, Tech. Rep. CS–0967, 1999.

[11] M. M. Michael, “Safe memory reclamation for dynamic
lock-free objects using atomic reads and writes,” in Proceed-
ings of the 21st ACM Symposium on Principles of Distributed
Computing, 2002, pp. 21–30.

[12] ——, “Hazard pointers: Safe memory reclamation for lock-
free objects,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 8, Aug. 2004.

[13] ——, “Scalable lock-free dynamic memory allocation,” in
Proceedings of the 2004 ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
2004, pp. 35–46.

[14] M. M. Michael and M. L. Scott, “Correction of a memory
management method for lock-free data structures,” Com-
puter Science Department, University of Rochester, Tech.
Rep., 1995.

[15] M. Moir, “Practical implementations of non-blocking syn-
chronization primitives,” in Proceedings of the 15th Annual
ACM Symposium on the Principles of Distributed Comput-
ing, Aug. 1997.

[16] R. Rajkumar, Synchronization in Real-Time Systems: A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
1991.

[17] H. Sundell and P. Tsigas, “NOBLE: A non-blocking inter-
process communication library,” in Proceedings of the 6th
Workshop on Languages, Compilers and Run-time Systems
for Scalable Computers, ser. Lecture Notes in Computer Sci-
ence. Springer Verlag, 2002.

[18] ——, “Fast and lock-free concurrent priority queues for
multi-thread systems,” in Proceedings of the 17th Inter-
national Parallel and Distributed Processing Symposium.
IEEE press, Apr. 2003, p. 11.

[19] J. D. Valois, “Lock-free data structures,” Ph.D. dissertation,
Rensselaer Polytechnic Institute, Troy, New York, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

