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Abstract

We present an efficient and practical lock-free implemen-
tation of a concurrent dictionary that is suitable for both
fully concurrent (large multi-processor) systems as well
as pre-emptive (multi-process) systems. Many algorithms
for concurrent dictionaries are based on mutual exclusion.
However, mutual exclusion causes blocking which has sev-
eral drawbacks and degrades the system’s overall perfor-
mance. Non-blocking algorithms avoid blocking, and are
either lock-free or wait-free. Our algorithm is based on the
randomized sequential list structure called Skiplist, and im-
plements the full set of operations on a dictionary that is
suitable for practical settings. In our performance evalua-
tion we compare our algorithm with the most efficient non-
blocking implementation of dictionaries known. The exper-
imental results clearly show that our algorithm outperforms
the other lock-free algorithm for dictionaries with realistic
sizes, both on fully concurrent as well as pre-emptive sys-
tems.

1 Introduction

Dictionaries (also called sets) are fundamental data
structures. From the operating system level to the user ap-
plication level, they are frequently used as basic compo-
nents.

Consequently, the design of efficient implementations of
dictionaries is a research area that has been extensively re-
searched. A dictionary supports five operations, theInsert,
the FindKey, the DeleteKey, the FindV alue and the
DeleteV alue operation. The abstract definition of a dic-
tionary is a set of key-value pairs, where the key is an
unique integer associated with a value. TheInsert oper-
ation inserts a new key-value pair into the dictionary and
theFindKey/DeleteKey operation finds/removes and re-
turns the value of the key-value pair with the specified key
that was in the dictionary. TheFindV alue/DeleteV alue
operation finds/removes and returns the key of the key-value
pair with the specified value that was in the dictionary.

To ensure consistency of a shared data object in a concur-
rent environment, the most common method is to use mu-
tual exclusion, i.e. some form of locking. Mutual exclusion
degrades the system’s overall performance [12] as it causes
blocking, i.e. other concurrent operations can not make any
progress while the access to the shared resource is blocked
by the lock. Using mutual exclusion can also cause dead-
locks, priority inversion (which can be solved efficiently on
uni-processors [11] with the cost of more difficult analysis,
although not as efficient on multiprocessor systems [10])
and even starvation.

To address these problems, researchers have proposed

non-blocking algorithms for shared data objects. Non-
blocking methods do not involve mutual exclusion, and
therefore do not suffer from the problems that blocking
can cause. Non-blocking algorithms are either lock-free
or wait-free. Lock-free implementations guarantee that re-
gardless of the contention caused by concurrent operations
and the interleaving of their sub-operations, always at least
one operation will progress. However, there is a risk for
starvation as the progress of other operations could cause
one specific operation to never finish. This is although dif-
ferent from the type of starvation that could be caused by
blocking, where a single operation could block every other
operation forever, and cause starvation of the whole system.
Wait-free [4] algorithms are lock-free and moreover they
avoid starvation as well, in a wait-free algorithm every op-
eration is guaranteed to finish in a limited number of steps,
regardless of the actions of the concurrent operations. Non-
blocking algorithms have been shown to be of big practical
importance [15, 16], and recently NOBLE, which is a non-
blocking inter-process communication library, has been in-
troduced [13].

There exist several algorithms and implementations of
concurrent dictionaries. The majority of the algorithms are
lock-based, constructed with either a single lock on top of
a sequential algorithm, or specially constructed algorithms
using multiple locks, where each lock protects a small part
of the shared data structure. However, most lock-based
algorithms [2] are based on the theoretical PRAM model
which is shown to be unrealistic [1]. As the search com-
plexity of a dictionary is significant, most algorithms are
based on tree or heap structures as well as tree-like struc-
tures as the Skiplist [9]. Previous non-blocking dictionaries
are though based on arrays or ordered lists as done by Valois
[17]. The path using concurrent ordered lists has been im-
proved by Harris [3], and lately [6] presented a significant
improvement by using a new memory management method
[7]. However, Valois [17] presented an incomplete idea of
how to design a concurrent Skiplist.

One common problem with many algorithms for concur-
rent dictionaries is the lack of precise defined semantics of
the operations. Previously known non-blocking dictionar-
ies only implements a limited set of operations, disregard-
ing theFindV alue andDeleteV alue operations. It is also
seldom that the correctness with respect to concurrency is
proved, using a strong property like linearizability [5].

In this paper we present a lock-free algorithm of a con-
current dictionary that is designed for efficient use in both
pre-emptive as well as in fully concurrent environments. In-
spired by the incomplete attempt by Valois [17], the algo-
rithm is based on the randomized Skiplist [9] data struc-
ture. It is also implemented using common synchroniza-
tion primitives that are available in modern systems. The
algorithm is described in detail later in this paper, and the
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Figure 1. Example of a Hash Table with Dic-
tionaries as branches.

aspects concerning the underlying lock-free memory man-
agement are also presented. The precise semantics of the
operations are defined and we give a proof that our imple-
mentation is lock-free and linearizable.

Concurrent dictionaries are often used as building blocks
for concurrent hash tables, where each branch (or bucket) of
the hash table is represented by a dictionary. In an optimal
setting, the average size of each branch is comparably low,
i.e. less than 10 nodes, as in [6]. However, in practical
settings the average size of each branch can vary signifi-
cantly. For example, a hash table can be used to represent
the words of a book, where each branch contains the words
that begin with a certain letter, as in Figure 1. Therefore it is
not unreasonable to expect dictionaries with sizes of several
thousands nodes.

We have performed experiments that compare the per-
formance of our algorithm with one of the most efficient
implementations of non-blocking dictionaries known [6].
As the previous algorithm did not implement the full set
of operations of our dictionary, we also performed experi-
ments with the full set of operations, compared with a sim-
ple lock-based Skiplist implementation. Experiments were
performed on three different platforms, consisting of a mul-
tiprocessor system using different operating systems and
equipped with either 2 or 64 processors. Our results show
that our algorithm outperforms the other lock-free imple-
mentation with realistic sizes and number of threads, in both
highly pre-emptive as well as in fully concurrent environ-
ments.

The rest of the paper is organized as follows. In Sec-
tion 2 we define the properties of the system that our imple-
mentation is aimed for. The actual algorithm is described
in Section 3. In Section 4 we define the precise semantics
for the operations on our implementations, as well show-
ing correctness by proving the lock-free and linearizability
property. The experimental evaluation that shows superior
performance for our implementation is presented in Section
5. We conclude the paper with Section 6.
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Figure 2. Shared Memory Multiprocessor Sys-
tem Structure

2 System Description

A typical abstraction of a shared memory multi-
processor system configuration is depicted in Figure 2.
Each node of the system contains a processor together with
its local memory. All nodes are connected to the shared
memory via an interconnection network. A set of co-
operating tasks is running on the system performing their
respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve
(run) many tasks at a time. The co-operating tasks, possi-
bly running on different processors, use shared data objects
built in the shared memory to co-ordinate and communi-
cate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent
shared memory. The shared memory may not though be
uniformly accessible for all nodes in the system; some pro-
cessors can have slower access than the others.

3 Algorithm

The algorithm is an extension and modification of the
parallel Skiplist data structure presented in [14]. The se-
quential Skiplist data structure which was invented by Pugh
[9], uses randomization and has a probabilistic time com-
plexity of O(log N) where N is the maximum number of el-
ements in the list. The data structure is basically an ordered
list with randomly distributed short-cuts in order to improve
search times, see Figure 3. The maximum height (i.e. the
maximum number of next pointers) of the data structure is
log N . The height of each inserted node is randomized ge-
ometrically in the way that 50% of the nodes should have
height 1, 25% of the nodes should have height 2 and so on.
To use the data structure as a dictionary, every node contains
a key and its corresponding value. The nodes are ordered in
respect of key (which has to be unique for each node), the
nodes with lowest keys are located first in the list. The fields
of each node item are described in Figure 6 as it is used in
this implementation. In all code figures in this section, ar-
rays are indexed starting from 0.
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In order to make the Skiplist construction concurrent and
non-blocking, we are using three of the standard atomic
synchronization primitives, Test-And-Set (TAS), Fetch-
And-Add (FAA) and Compare-And-Swap (CAS). Figure
5 describes the specification of these primitives which are
available in most modern platforms.

3.1 Memory Management

As we are concurrently (with possible preemptions)
traversing nodes that will be continuously allocated and
reclaimed, we have to consider several aspects of mem-
ory management. No node should be reclaimed and then
later re-allocated while some other process is traversing this
node. This can be solved for example by careful reference
counting. We have selected the lock-free memory man-
agement scheme invented by Valois [17] and corrected by
Michael and Scott [8], which makes use of the FAA and
CAS atomic synchronization primitives.

To insert or delete a node from the list we have to change
the respective set of next pointers. These have to be changed
consistently, but not necessary all at once. Our solution is to
have additional information on each node about its deletion
(or insertion) status. This additional information will guide
the concurrent processes that might traverse into one par-
tially deleted or inserted node. When we have changed all
necessary next pointers, the node is fully deleted or inserted.

One problem, that is general for non-blocking imple-
mentations that are based on the linked-list structure, arises
when inserting a new node into the list. Because of the
linked-list structure one has to make sure that the previous
node is not about to be deleted. If we are changing the next

function TAS(value:pointer to word ):boolean
atomic do

if *value=0then
*value:=1;
return true ;

else return false;

procedureFAA(address:pointer to word , number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word , oldvalue:word
, newvalue:word):boolean

atomic do
if *address = oldvaluethen

*address := newvalue;
return true ;

else return false;

Figure 5. The Test-And-Set (TAS), Fetch-And-
Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

pointer of this previous node atomically with CAS, to point
to the new node, and then immediately afterwards the pre-
vious node is deleted - then the new node will be deleted as
well, as illustrated in Figure 4. There are several solutions
to this problem. One solution is to use the CAS2 opera-
tion as it can change two pointers atomically, but this oper-
ation is not available in any existing multiprocessor system.
A second solution is to insert auxiliary nodes [17] between
each two normal nodes, and the latest method introduced by
Harris [3] is to use one bit of the pointer values as a dele-
tion mark. On most modern 32-bit systems, 32-bit values
can only be located at addresses that are evenly dividable
by 4, therefore bits 0 and 1 of the address are always set to
zero. The method is then to use the previously unused bit
0 of the next pointer to mark that this node is about to be
deleted, using CAS. Any concurrentInsert operation will
then be notified about the deletion, when its CAS operation
will fail.

Another memory management issue is how to de-
reference pointers safely. If we simply de-reference the
pointer, it might be that the corresponding node has been
reclaimed before we could access it. It can also be that
bit 0 of the pointer was set, thus marking that the node is
deleted, and therefore the pointer is not valid. The follow-
ing functions are defined for safe handling of the memory
management:

function MALLOC_NODE():pointer to Node
function READ_NODE(address:pointer to pointer to Node)

:pointer to Node



structure Node
key,level,validLevel,version:integer
value :pointer to word
next[level],prev :pointer to Node

// Global variables
head,tail :pointer to Node
// Local variables (for all functions/procedures)
node1,node2,newNode,savedNodes[maxlevel+1] :pointer to Node
prev,last,stop :pointer to Node
key1,key2,step,jump,version,version2:integer

function CreateNode(level:integer, key:integer,
value:pointer to word ):pointer to Node
C1 node:=MALLOC_NODE();
C2 node.prev:=NULL;
C3 node.validLevel:=0;
C4 node.level:=level;
C5 node.key:=key;
C6 node.value:=value;
C7 return node;

procedureReleaseReferences(node:pointer to Node)
R1 node.validLevel:=0;
R2 if node.prevthen
R3 prev:=node.prev;
R4 node.prev:=NULL;
R5 RELEASE_NODE(prev);

function ReadNext(node1:pointer to pointer to Node, level:integer)
:pointer to Node
N1 if IS_MARKED((*node1).value)then

*node1:=HelpDelete(*node1,level);
N2 node2:=READ_NODE((*node1).next[level]);
N3 while node2=NULLdo
N4 *node1:=HelpDelete(*node1,level);
N5 node2:=READ_NODE((*node1).next[level]);
N6 return node2;

function ScanKey(node1:pointer to pointer to Node, level:integer
, key:integer):pointer to Node
K1 node2:=ReadNext(node1,level);
K2 while node2.key < keydo
K3 RELEASE_NODE(*node1);
K4 *node1:=node2;
K5 node2:=ReadNext(node1,level);
K6 return node2;

function SearchLevel(last:pointer to pointer to Node,
level:integer, key:integer): pointer to Node
S1 node1:=*last;
S2 stop:=NULL;
S3 while true do
S4 node2:=GET_UNMARKED(node1.next[level]);
S5 if node2=NULLthen
S6 if node1=*lastthen

S7 *last:=HelpDelete(*last,level);
S8 node1:=*last;
S9 else ifnode2.key≥key then
S10 COPY_NODE(node1);
S11 if (node1.validLevel>levelor node1=*lastor node1=stop)

and node1.key<keyand node1.key≥(*last).keythen
S12 if node1.validLevel≤level then
S13 RELEASE_NODE(node1);
S14 node1:=COPY_NODE(*last);
S15 node2:=ScanKey(&node1,level,key);
S16 RELEASE_NODE(node2);
S17 return node1;
S18 RELEASE_NODE(node1);
S19 stop:=node1;
S20 if IS_MARKED((*last).value)then
S21 *last:=HelpDelete(*last,level);
S22 node1:=*last;
S23 else ifnode2.key≥(*last).keythen
S24 node1:=node2;
S25 else
S26 if IS_MARKED((*last).value)then
S27 *last:=HelpDelete(*last,level);
S28 node1:=*last;

function Insert(key:integer, value:pointer to word ):boolean
I1 Choose level randomly according to the Skiplist distribution
I2 newNode:=CreateNode(level,key,value);
I3 COPY_NODE(newNode);
I4 savedNodes[maxLevel]:=head;
I5 for i:=maxLevel-1to 0 step-1 do
I6 savedNodes[i]:=SearchLevel(&savedNodes[i+1],i,key);
I7 if maxLevel-1>i≥level-1 then

RELEASE_NODE(savedNodes[i+1]);
I8 node1:=savedNodes[0];
I9 while true do
I10 node2:=ScanKey(&node1,0,key);
I11 value2:=node2.value;
I12 if not IS_MARKED(value2)and node2.key=keythen
I13 if CAS(&node2.value,value2,value)then
I14 RELEASE_NODE(node1);
I15 RELEASE_NODE(node2);
I16 for i:=1 to level-1do
I17 RELEASE_NODE(savedNodes[i]);
I18 RELEASE_NODE(newNode);
I19 RELEASE_NODE(newNode);
I20 return true2;
I21 else
I22 RELEASE_NODE(node2);
I23 continue;
I24 newNode.next[0]:=node2;
I25 RELEASE_NODE(node2);
I26 if CAS(&node1.next[0],node2,newNode)then
I27 RELEASE_NODE(node1);
I28 break;
I29 Back-Off
I30 newNode.version:=newNode.version+1;

Figure 6. The algorithm, part 1(3).



I31 newNode.validLevel:=1;
I32 for i:=1 to level-1do
I33 node1:=savedNodes[i];
I34 while true do
I35 node2:=ScanKey(&node1,i,key);
I36 newNode.next[i]:=node2;
I37 RELEASE_NODE(node2);
I38 if IS_MARKED(newNode.value)then
I39 RELEASE_NODE(node1);
I40 break;
I41 if CAS(&node1.next[i],node2,newNode)then
I42 newNode.validLevel:=i+1;
I43 RELEASE_NODE(node1);
I44 break;
I45 Back-Off
I46 if IS_MARKED(newNode.value)then

newNode:=HelpDelete(newNode,0);
I47 RELEASE_NODE(newNode);
I48 return true ;

function FindKey(key:integer):pointer to word
F1 last:=COPY_NODE(head);
F2 for i:=maxLevel-1to 0 step-1 do
F3 node1:=SearchLevel(&last,i,key);
F4 RELEASE_NODE(last);
F5 last:=node1;
F6 node2:=ScanKey(&last,0,key);
F7 RELEASE_NODE(last);
F8 value:=node2.value;
F9 if node2.key6=key or IS_MARKED(value)then
F10 RELEASE_NODE(node2);
F11 return NULL;
F12 RELEASE_NODE(node2);
F13 return value;

function DeleteKey(key:integer):pointer to word
return Delete(key,false,NULL);

function Delete(key:integer, delval:boolean,
value:pointer to word ):pointer to word
D1 savedNodes[maxLevel]:=head;
D2 for i:=maxLevel-1to 0 step-1 do
D3 savedNodes[i]:=SearchLevel(&savedNodes[i+1],i,key);
D4 node1:=ScanKey(&savedNodes[0],0,key);
D5 while true do
D6 if not delvalthen value:=node1.value;
D7 if node1.key=keyand (not delvalor node1.value=value)

and not IS_MARKED(value)then
D8 if CAS(&node1.value,value,GET_MARKED(value))then
D9 node1.prev:=COPY_NODE(savedNodes[(node1.level-1)/2]);
D10 break;
D11 else continue;
D12 RELEASE_NODE(node1);
D13 for i:=0 to maxLevel-1do
D14 RELEASE_NODE(savedNodes[i]);

D15 return NULL;
D16 for i:=0 to node1.level-1do
D17 repeat
D18 node2:=node1.next[i];
D19 until IS_MARKED(node2)or CAS(&node1.next[i],

node2,GET_MARKED(node2));
D20 for i:=node1.level-1to 0 step-1 do
D21 prev:=savedNodes[i];
D22 while true do
D23 if node1.next[i]=1then break;
D24 last:=ScanKey(&prev,i,node1.key);
D25 RELEASE_NODE(last);
D26 if last6=node1or node1.next[i]=1then break;
D27 if CAS(&prev.next[i],node1,

GET_UNMARKED(node1.next[i]))then
D28 node1.next[i]:=1;
D29 break;
D30 if node1.next[i]=1then break;
D31 Back-Off
D32 RELEASE_NODE(prev);
D33 for i:=node1.levelto maxLevel-1do
D34 RELEASE_NODE(savedNodes[i]);
D35 RELEASE_NODE(node1);
D36 RELEASE_NODE(node1);
D37 return value;

function FindValue(value:pointer to word ):integer
return FDValue(value,false);

function DeleteValue(value:pointer to word ):integer
return FDValue(value,true);

function FDValue(value:pointer to word , delete:boolean):integer
V1 jump:=16;
V2 last:=COPY_NODE(head);

next_jump:
V3 node1:=last;
V4 key1:=node1.key;
V5 step:=0;
V6 while true do
V7 ok=false;
V8 version:=node1.version;
V9 node2:=node1.next[0];
V10 if not IS_MARKED(node2)and node26=NULL then
V11 version2:=node2.version;
V12 key2:=node2.key;
V13 if node1.key=key1and node1.validLevel>0and

node1.next[0]=node2and node1.version=version
and node2.key=key2and node2.validLevel>0and
node2.version=version2then ok:=true;

V14 if not ok then
V15 node1:=node2:=ReadNext(&last,0);
V16 key1:=key2:=node2.key;
V17 version2:=node2.version;
V18 RELEASE_NODE(last);
V19 last:=node2;

Figure 7. The algorithm, part 2(3).



V20 step:=0;
V21 if node2=tailthen
V22 RELEASE_NODE(last);
V23 return ⊥;
V24 if node2.value=valuethen
V25 if node2.version=version2then
V26 if not deleteor Delete(key2,true,value)=valuethen
V27 RELEASE_NODE(last);
V28 return key2;
V29 else if++step≥jump then
V30 COPY_NODE(node2);
V31 if node2.validLevel=0or node2.key6=key2 then
V32 RELEASE_NODE(node2);
V33 node2:=ReadNext(&last,0);
V34 if jump≥4 then jump:=jump/2;
V35 elsejump:=jump+jump/2;
V36 RELEASE_NODE(last);
V37 last:=node2;
V38 gotonext_jump;
V39 else
V40 key1:=key2;
V41 node1:=node2;

function HelpDelete(node:pointer to Node,
level:integer):pointer to Node
H1 for i:=level to node.level-1do

H2 repeat
H3 node2:=node.next[i];
H4 until IS_MARKED(node2)or CAS(&node.next[i],

node2,GET_MARKED(node2));
H5 prev:=node.prev;
H6 if not prevor level≥ prev.validLevelthen
H7 prev:=COPY_NODE(head);
H8 elseCOPY_NODE(prev);
H9 while true do
H10 if node.next[level]=1then break;
H11 for i:=prev.validLevel-1to levelstep-1 do
H12 node1:=SearchLevel(&prev,i,node.key);
H13 RELEASE_NODE(prev);
H14 prev:=node1;
H15 last:=ScanKey(&prev,level,node.key);
H16 RELEASE_NODE(last);
H17 if last6=nodeor node.next[level]=1then break;
H18 if CAS(&prev.next[level],node,

GET_UNMARKED(node.next[level]))then
H19 node.next[level]:=1;
H20 break;
H21 if node.next[level]=1then break;
H22 Back-Off
H23 RELEASE_NODE(node);
H24 return prev;

Figure 8. The algorithm, part 3(3).

function COPY_NODE(node:pointer to Node):pointer to
Node

procedureRELEASE_NODE(node:pointer to Node)

The function MALLOC_NODEallocates a new node
from the memory pool of pre-allocated nodes andRE-
LEASE_NODEdecrements the reference counter on the
corresponding given node. If the reference count reaches
zero, then it calls theReleaseReferencesfunction that will
call RELEASE_NODEon the nodes that this node has
owned pointers to, and then it reclaims the node. The func-
tion COPY_NODEincreases the reference counter for the
corresponding given node andREAD_NODEde-reference
the given pointer and increase the reference counter for the
corresponding node. In case the de-referenced pointer is
marked, the function returns NULL.

3.2 Traversing

The functions for traversing the nodes are defined as fol-
lows:

function ReadNext(node1:pointer to pointer to Node
,level:integer):pointer to Node

function ScanKey(node1:pointer to pointer to Node
,level:integer,key:integer):pointer to Node

While traversing the nodes, processes will eventually
reach nodes that are marked to be deleted. As the process
that invoked the correspondingDeleteoperation might be
pre-empted, thisDeleteoperation has to be helped to finish
before the traversing process can continue. However, it is
only necessary to help the part of theDeleteoperation on the
current level in order to be able to traverse to the next node.
The functionReadNext, see Figure 6, traverses to the next
node on the given level while helping any deleted nodes in
between to finish the deletion. The functionScanKey, see
Figure 6, traverses in several steps through the next pointers
at the current level until it finds a node that has the same or
higher key than the given key. The argument node1 in the
ReadNextandScanKeyfunctions are continuously updated
to point to the previous node of the returned node.

However, the use of the safeReadNextandScanKeyop-
erations for traversing the Skiplist, will cause the perfor-
mance to be significantly lower compared to the sequen-
tial case where the next pointers are used directly. As the
nodes, which are used in the lock-free memory manage-
ment scheme, will be reused for the same purpose when re-
allocated again after being reclaimed, the individual fields
of the nodes that are not part of the memory management
scheme will be intact. ThevalidLevelfield can therefore
be used for indicating if the current node can be used for
possibly traversing further on a certain level. A value of



0 indicates that this node can not be used for traversing at
all, as it is possibly reclaimed or not yet inserted. As the
validLevelfield is only set to0 directly before reclamation
in line R1, a positive value indicates that the node is allo-
cated. A value ofn + 1 indicated that this node has been
inserted up to leveln. However, the next pointer of leveln
on the node may have been marked and thus indicating pos-
sible deletion at that level of the node. As the node is not
reclaimed thekey field is intact, and therefore it is possible
to traverse from the previous node to the current position.
By increasing the reference count of the node before check-
ing thevalidLevelfield, it can be assured that the node stays
allocated if it was allocated directly after the increment. Be-
cause the next pointers are always updated to point (regard-
less of the mark) either to nothing (NULL) or to a node that
is part of the memory management, allocated or reclaimed,
it is possible in some scenarios to traverse directly through
the next pointers. This approach is taken by theSearchLevel
function, see Figure 6, which traverses rapidly from an allo-
cated nodelast and returns the node whichkey field is the
highest key that is lower than the searched key at the current
level. During the rapid traversal it is checked that the cur-
rent key is within the search boundaries in line S23 and S11,
otherwise the traversal restarts from thelast node as this
indicates that a node has been reclaimed and re-allocated
while traversed. When the node suitable for returning has
been reached, it is checked that it is allocated in line S11
and also assured that it then stays allocated in line S10. If
this succeeds the node is returned, otherwise the traversal
restarts at nodelast. If this fails twice, the traversal are
done using the safeScanKeyoperations in lines S12 to S16,
as this indicates that the node possibly is inserted at the cur-
rent level, but thevalidLevelfield has not yet been updated.
In case the nodelast is marked for deletion, it might have
been deleted at the current level and thus it can not be used
for traversal. Therefore the nodelast is checked if it is
marked in lines S6, S20 and S26. If marked, the nodelast
will be helped to fully delete on the current level andlast is
set to the previous node.

3.3 Inserting and Deleting Nodes

The implementation of theInsert operation, see Figure
6, starts in lines I4-I10 with a search phase to find the node
after which the new node (newNode) should be inserted.
This search phase starts from the head node at the highest
level and traverses down to the lowest level until the correct
node is found (node1). When going down one level, the last
node traversed on that level is remembered (savedNodes)
for later use (this is where we should insert the new node at
that level). Now it is possible that there already exists a node
with the same key as of the new node, this is checked in
lines I12-I23, the value of the old node (node2) is changed

atomically with a CAS. Otherwise, in lines I24-I45 it starts
trying to insert the new node starting with the lowest level
increasing up to the level of the new node. The next pointers
of the (to be previous) nodes are changed atomically with a
CAS. After the new node has been inserted at the lowest
level, it is possible that it is deleted by a concurrentDelete
operation before it has been inserted at all levels, and this
is checked in lines I38 and I46. TheFindKeyoperation, see
Figure 6, basically follows theInsertoperation.

TheDeleteoperation, see Figure 6, starts in lines D1-D4
with a search phase to find the first node which key is equal
or higher than the searched key. This search phase starts
from the head node at the highest level and traverses down
to the lowest level until the correct node is found (node1).
When going down one level, the last node traversed on that
level is remembered (savedNodes) for later use (this is the
previous node at which the next pointer should be changed
in order to delete the targeted node at that level). If the
found node is the correct node, it tries to set the deletion
mark of thevalue field in line D8 using the CAS primi-
tive, and if it succeeds it also writes a valid pointer (which
corresponding node will stay allocated until this node gets
reclaimed) to theprev field of the node in line D9. This
prev field is necessary in order to increase the performance
of concurrentHelpDeleteoperations, these otherwise would
have to search for the previous node in order to complete the
deletion. The next step is to mark the deletion bits of the
next pointers in the node, starting with the lowest level and
going upwards, using the CAS primitive in each step, see
lines D16-D19. Afterwards in lines D20-D32 it starts the
actual deletion by changing the next pointers of the previ-
ous node (prev), starting at the highest level and continuing
downwards. The reason for doing the deletion in decreas-
ing order of levels, is that concurrent operations that are
in the search phase also start at the highest level and pro-
ceed downwards, in this way the concurrent search opera-
tions will sooner avoid traversing this node. The procedure
performed by theDeleteoperation in order to change each
next pointer of the previous node, is to first search for the
previous node and then perform the CAS primitive until it
succeeds.

3.4 Helping Scheme

The algorithm has been designed for pre-emptive as well
as fully concurrent systems. In order to achieve the lock-
free property (that at least one thread is doing progress) on
pre-emptive systems, whenever a search operation finds a
node that is about to be deleted, it calls theHelpDeleteop-
eration and then proceeds searching from the previous node
of the deleted. TheHelpDeleteoperation, see Figure 8, tries
to fulfill the deletion on the current level and returns when it
is completed. It starts in lines H1-H4 with setting the dele-



tion mark on all next pointers in case they have not been set.
In lines H5-H6 it checks if the node given in the prev field is
valid for deletion on the current level, otherwise it starts the
search at the head node. In lines H11-H16 it searches for the
correct node (prev). The actual deletion of this node on the
current level takes place in line H18. Lines H10-H22 will be
repeated until the node is deleted at the current level. This
operation might execute concurrently with the correspond-
ing Deleteoperation as well with otherHelpDeleteoper-
ations, and therefore all operations synchronize with each
other in lines D23, D26, D28, D30, H10, H17, H19 and
H21 in order to avoid executing sub-operations that have
already been performed.

In fully concurrent systems though, the helping strategy
can downgrade the performance significantly. Therefore the
algorithm, after a number of consecutive failed attempts to
help concurrentDeleteoperations that stops the progress of
the current operation, puts the current operation into back-
off mode. When in back-off mode, the thread does nothing
for a while, and in this way avoids disturbing the concurrent
operations that might otherwise progress slower. The dura-
tion of the back-off is proportional to the number of threads,
and for each consecutive entering of back-off mode during
one operation invocation, the duration is increased exponen-
tially.

3.5 Value Oriented Operations

The FindValueand DeleteValueoperations, see Figure
7, traverse from the head node along the lowest level in the
Skiplist until a node with the searched value is found. In ev-
ery traversal step, it has to be assured that the step is taken
from a valid node to a valid node, both valid at the same
time. ThevalidLevelfield of the node can be used to safely
verify the validity, unless the node has been reclaimed. The
version field is incremented by theInsertoperation in line
I30, after the node has been inserted at the lowest level, and
directly before thevalidLevelis set to indicate validity. By
performing two consecutive reads of theversion field with
the same contents, and successfully verifying the validity
in between the reads, it can be concluded that the node has
stayed valid from the first read of the version until the suc-
cessful validity check. This is done is lines V8-V13. If this
fails, it restarts and traverses the safe nodelast one step
using theReadNextfunction in lines V14-V21. After a cer-
tain number (jump) of successful fast steps, an attempt to
advance thelast node to the current position is performed
in lines V29-V38. If this attempt succeeds, the threshold
jump is increased by 1 1/2 times, otherwise it is halved.
The traversal is continued until a node with the searched
value is reached in line V24 or that the tail node is reached
in line V21. In case the found node should be deleted, the
Deleteoperation is called for this purpose in line V26.

4 Correctness

In this section we present the proof of our algorithm. We
first prove that our algorithm is a linearizable one [5] and
then we prove that it is lock-free. A set of definitions that
will help us to structure and shorten the proof is first ex-
plained in this section. We start by defining the sequential
semantics of our operations and then introduce two defini-
tions concerning concurrency aspects in general.

Definition 1 We denote withLt the abstract internal state
of a dictionary at the timet. Lt is viewed as a set of
unique pairs〈k, v〉 consisting of a unique keyk and a cor-
responding unique valuev. The operations that can be per-
formed on the dictionary areInsert (I), FindKey (FK),
DeleteKey (DK), FindV alue (FV ) and DeleteV alue
(DV ). The timet1 is defined as the time just before the
atomic execution of the operation that we are looking at,
and the timet2 is defined as the time just after the atomic
execution of the same operation. The return value oftrue2

is returned by anInsert operation that has succeeded to
update an existing node, the return value oftrue is returned
by anInsert operation that succeeds to insert a new node.
In the following expressions that defines the sequential se-
mantics of our operations, the syntax isS1 : O1, S2, where
S1 is the conditional state before the operationO1, andS2

is the resulting state after performing the corresponding op-
eration:

〈k1, _〉 6∈ Lt1 : I1(〈k1,v1〉) = true,

Lt2 = Lt1 ∪ {〈k1,v1〉} (1)

〈k1, v11〉 ∈ Lt1 : I1(〈k1,v12〉) = true2,

Lt2 = Lt1 \ {〈k1,v11〉} ∪ {〈k1,v12〉} (2)

〈k1, v1〉 ∈ Lt1 : FK1(k1) = v1 (3)

〈k1, v1〉 6∈ Lt1 : FK1(k1) = ⊥ (4)

〈k1, v1〉 ∈ Lt1 : DK1(k1) = v1,

Lt2 = Lt1 \ {〈k1,v1〉} (5)

〈k1, v1〉 6∈ Lt1 : DK1(k1) = ⊥ (6)

〈k1, v1〉 ∈ Lt1 : FV1(v1) = k1 (7)

〈k1, v1〉 6∈ Lt1 : FV1(v1) = ⊥ (8)

〈k1, v1〉 ∈ Lt1 : DV1(v1) = k1,

Lt2 = Lt1 \ {〈k1,v1〉} (9)

〈k1, v1〉 6∈ Lt1 : DV1(v1) = ⊥ (10)



Note that the operations will work correctly also if relax-
ing the condition that values are unique. However, the re-
sults of theFindV alue andDeleteV alue operations will
be undeterministic in the sense that it is not decidable which
key value that will be returned in the presence of several
key-value pairs with the same value. In the case of the
DeleteV alue operation, still only one pair will be removed.

Definition 2 In a global time model each concurrent op-
eration Op “occupies" a time interval[bOp, fOp] on the
linear time axis(bOp < fOp). The precedence relation
(denoted by ‘→’) is a relation that relates operations of
a possible execution,Op1 → Op2 means thatOp1 ends
beforeOp2 starts. The precedence relation is a strict par-
tial order. Operations incomparable under→ are called
overlapping. The overlapping relation is denoted by‖ and
is commutative, i.e.Op1 ‖ Op2 and Op2 ‖ Op1. The
precedence relation is extended to relate sub-operations
of operations. Consequently, ifOp1 → Op2, then for
any sub-operationsop1 and op2 of Op1 and Op2, respec-
tively, it holds thatop1 → op2. We also define the di-
rect precedence relation→d, such that ifOp1→dOp2, then
Op1 → Op2 and moreover there exists no operationOp3

such thatOp1 → Op3 → Op2.

Definition 3 In order for an implementation of a shared
concurrent data object to be linearizable [5], for every con-
current execution there should exist an equal (in the sense
of the effect) and valid (i.e. it should respect the semantics
of the shared data object) sequential execution that respects
the partial order of the operations in the concurrent execu-
tion.

Next we are going to study the possible concurrent exe-
cutions of our implementation. First we need to define the
interpretation of the abstract internal state of our implemen-
tation.

Definition 4 The pair〈k, v〉 is present (〈k, v〉 ∈ L) in the
abstract internal stateL of our implementation, when there
is a next pointer from a present node on the lowest level
of the Skiplist that points to a node that contains the pair
〈k, v〉, and this node is not marked as deleted with the mark
on the value.

Lemma 1 The definition of the abstract internal state for
our implementation is consistent with all concurrent opera-
tions examining the state of the dictionary.

Proof: As the next and value pointers are changed using
the CAS operation, we are sure that all threads see the same
state of the Skiplist, and therefore all changes of the abstract
internal state seems to be atomic. 2

As we are using a lock-free memory management
scheme with a fixed memory size and where reclaimed

nodes can only be allocated again for the same purpose,
we know that there is a fixed number of nodes that will be
used with the Skiplist, and that the individual fields (like
key, value, next etc.) of the nodes are only changed by the
operations of this algorithm.

Definition 5 A node that is used in the Skiplist is defined
asvalid if the node is inserted at the lowest level, i.e. there
is a next pointer on any other valid node that points (dis-
regarding the eventual mark) to this node, or the node the
validLevel field set to higher than zero and has been fully
deleted but not yet been reclaimed. All other nodes are de-
fined asinvalid, i.e. the node is reclaimed, or has been al-
located but not yet inserted at the lowest level. A node that
is used in the Skiplist is defined asvalid at level iif the node
is inserted at leveli, i.e. there is a next pointer at leveli on
any other valid node that points (disregarding the eventual
mark) to this node, or the node has thevalidLevel field set
higher thani and has been fully deleted but not yet been
reclaimed.

An interesting observation of the previous definition is
that if a node is present in the abstract internal stateL then
it is also valid, and that if a node is valid then also the indi-
vidual fields of the node are valid.

Lemma 2 A valid node with a increased reference count,
can always be used to continue traversing from, even if the
node is deleted.

Proof: For every instruction in the algorithm that in-
crements the reference count (i.e. theREAD_NODE
andCOPY _NODE functions), there exists a correspond-
ing instruction that decrements the reference count equally
much (i.e. theRELEASE_NODE function). This means
that if the reference count has been incremented, that the
reference count can not reach zero (and thus be reclaimed)
until the corresponding decrement instruction is executed.
A node with a increased reference count can thus not be
reclaimed, unless it already was reclaimed before the refer-
ence count was incremented. As the node is valid, the key
field is also valid, which means that we know the absolute
position in the Skiplist. If the node is not deleted the next
pointers can be used for traversing. Otherwise it is always
possible to get to the previous node by searching from the
head of the Skiplist using the key, and traverse from there.

2

Lemma 3 The nodenode1 that is found in line S17 of the
SearchLevel function, is a valid node with a increased ref-
erence count and will therefore not be reclaimed by concur-
rent tasks, and is (or was) the node with the nearest key that
is lower than the searched key.



Proof: The reference count is incremented in line S10 be-
fore the check for validity in line S11, which means that
if the validity test succeeds then the node will stay valid.
The validLevel field of a node is set in lines I31 and I42
to the current level plus one after each successful step of
the Insert operation, and is set to zero in line R1 just be-
fore the node is fully deleted and will be reclaimed. This
means that if thevalidLevel field is more than the current
level, that the node is valid. Alternatively if the node is the
same as a known valid nodelast, then it is also valid. If the
node is valid, it is also checked that the key value is lower
than was searched for. Before the validity check, the next
node ofnode1 was read asnode2 in line S4 and its key was
checked to be more than or equal to the searched key in line
S9. This means that the nodenode1 in line S17 is valid and
was (or still is) the node with the nearest key that is lower
than the searched key. 2

Lemma 4 The nodenode2 that is found in line V26 of the
FindV alue andDeleteV alue functions, was present dur-
ing the read of its value and this value was the same as
searched for.

Proof: The Delete operation marks the value before it
starts with marking the next pointers and removing the node
from the Skiplist. A node that is valid and the value is non-
marked, is therefore present in the dictionary as the node
must be inserted at the lowest level and not yet deleted. The
node was valid in line V13 as thevalidLevel field was pos-
itive. The version field is only incremented in line I30,
directly before thevalidLevel field becomes positive. As
the version was the same before the check for validity in
line V13 as well as after the check for equalness and valid-
ity in V24, this means that the node has been valid all the
time. 2

Lemma 5 The nodenode2 that is found in line V37 of the
FindV alue andDeleteV alue functions, is a valid node at
the current, or between the previously known safe nodelast
and the current position along the searchpath. The node
also has a increased reference count and will therefore not
be reclaimed by concurrent tasks.

Proof: The reference count is incremented in line V30 be-
fore the check for validity in line V31, which means that if
the validity test succeeds then the node will stay valid. The
validity check follows Lemma 3. If the node was not valid
or the key of the node did not match the current position in
the searchpath (i.e. the key field has changed due to recla-
mation of the node before the increment of the reference
count) thennode2 will be set to the next node oflast using
theReadNext function. 2

Lemma 6 The functionsFindV alue and DeleteV alue
will not skip any nodes while traversing the Skiplist from
left to right, and will therefore traverse through all nodes
that was present in the Skiplist at the start of the traversing
and which was still present while traversed.

Proof: In order to safely move fromnode1 to node2, it has
to be assured that both nodes are valid and thatnode1 has
been pointing tonode2 at the lowest level while both were
valid, and thatnode1 is at the current position (i.e. thekey
field). If this holds we can conclude thatnode2 is, or was
at the time of starting the traversal, the very next node of
node1. These properties are checked in line V13, where
the validity is confirmed to have hold during the check of
the other properties by that theversion fields of both nodes
were the same as in lines V8 and V11 before checking the
validity using thevalidLevel field. If the check in line V13
failed, thennode2 will be set to the next node oflast using
theReadNext function, which position is between the pre-
viously known safe nodelast and the current position along
the searchpath. Given by Lemma 5, when the nodelast
is updated, it is always set to a valid node with a position
between the next node of the previously known safe node
last and the current position along the searchpath. Conse-
quently, the functionsFindV alue andDeleteV alue will
not skip any nodes while traversing the Skiplist from left to
right. 2

Definition 6 The decision point of an operation is defined
as the atomic statement where the result of the operation is
finitely decided, i.e. independent of the result of any sub-
operations after the decision point, the operation will have
the same result. We define the state-read point of an opera-
tion to be the atomic statement where the state of the dictio-
nary, which result the decision point depends on is read. We
also define the state-change point as the atomic statement
where the operation changes the abstract internal state of
the dictionary after it has passed the corresponding deci-
sion point.

We will now use these points in order to show the ex-
istance and location in execution history of a point where
the concurrent operation can be viewed as it occured atom-
ically, i.e. thelinearizability point.

Lemma 7 An Insert operation which succeeds
(I(〈k, v〉) = true), takes effect atomically at one
statement.

Proof: The decision point for anInsert operation which
succeeds (I(〈k, v〉) = true), is when the CAS sub-
operation in line I26 (see Figure 6) succeeds, all follow-
ing CAS sub-operations will eventually succeed, and the
Insert operation will finally returntrue. The state of the



list (Lt1 ) directly before the passing of the decision point
must have been〈k, _〉 6∈ Lt1 , otherwise the CAS would
have failed. The state of the list directly after passing the
decision point will be〈k, v〉 ∈ Lt2 . Consequently, the lin-
earizability point will be the CAS sub-operation in line I26.

2

Lemma 8 An Insert operation which updates
(I(〈k, v〉) = true2), takes effect atomically at one
statement.

Proof: The decision point for anInsert operation which
updates (I(〈k, v〉) = true2), is when the CAS will suc-
ceed in line I13. The state of the list (Lt1 ) directly before
passing the decision point must have been〈k, _〉 ∈ Lt1 , oth-
erwise the CAS would have failed. The state of the list di-
rectly after passing the decision point will be〈k, v〉 ∈ Lt3 .
Consequently, the linearizability point will be the CAS sub-
operation in line I13. 2

Lemma 9 A FindKey operation which succeeds
(FK(k) = v), takes effect atomically at one statement.

Proof: The decision point for aFindKey operation which
succeeds (FK(k) = v), is when the check for marked value
in line F9 fails. The state-read point is when the value of
the node is read in line F8. As thekey field of the node can
not change concurrently, the state of the list (Lt1 ) directly
before passing the state-read point must have been〈k, v〉 ∈
Lt1 . Consequently, the linearizability point will be the read
sub-operation of thevalue field in line F8. 2

Lemma 10 A FindKey operation which fails (FK(k) =
⊥), takes effect atomically at one statement.

Proof: The decision point for aFindKey operation which
fails (FK(k) = ⊥), is when the check for key equality fails
or when the check for marked value in line F9 succeeds. If
the key equality in line F9 fails, the state-read point is the
read sub-operation ofREAD_NODE in line N2 or N5
(from K1 or K5, from F6) when the next pointer at lowest
level of the previous node is read. If the check for marked
value in line F9 succeeds, the state-read point is the read
sub-operation of thevalue field in line F8. In both cases,
the state of the list (Lt1 ) directly before passing the state-
read point must have been〈k, v〉 6∈ Lt1 . Consequently, the
linearizability point will be either of the state-read points.

2

Lemma 11 A DeleteKey operation which succeeds
(DK(k) = v), takes effect atomically at one statement.

Proof: The decision point for aDeleteKey operation
which succeeds (DK(k) = v) is when the CAS sub-
operation in line D8 (see Figure 7) succeeds. The state of

the list (Lt) directly before passing of the decision point
must have been〈k, v〉 ∈ Lt, otherwise the CAS would have
failed. The state of the list directly after passing the decision
point will be 〈k, v〉 6∈ Lt. Consequently, the linearizability
point will be the CAS sub-operation in line D8. 2

Lemma 12 A DeleteKey operations which fails
(DK(k) = ⊥), takes effect atomically at one state-
ment.

Proof: The decision point for aDeleteKey operation
which fails (DK(k) = ⊥), is when the check for key equal-
ity fails or when the check for non-marked value in line D7
fails. If the key equality in line D7 fails, the state-read point
is the read sub-operation ofREAD_NODE in line N2 or
N5 (from K1 or K5, from D4) when the next pointer at low-
est level of the previous node is read. If the check for non-
marked value in line D7 fails, the state-read point is the read
sub-operation of thevalue field in line D6. In both cases,
the state of the list (Lt1 ) directly before passing the state-
read point must have been〈k, v〉 6∈ Lt1 . Consequently, the
linearizability point will be either of the state-read points.

2

Lemma 13 A FindV alue operation which succeeds
(FV (v) = k), takes effect atomically at one statement.

Proof: The decision point for aFindV alue operation
which succeeds (FV (v) = k), is when the check for valid
node (and also a validvalue field in line V24) in line V25
succeeds. The state-read point is when thevalue field is
read in line V24. As thekey field of the node can not change
concurrently and as given by Lemma 4, the state of the list
(Lt1 ) directly before passing the state-read point must have
been〈k, v〉 ∈ Lt1 . Consequently, the linearizability point
will be the read sub-operation of thevalue field in line V24.

2

Lemma 14 A FindV alue operation which fails
(FV (v) = ⊥), takes effect atomically at one statement.

Proof: For aFindV alue operation which fails (FV (v) =
⊥), all checks for value equality in line V24 fails. Because
of the uniqueness of values, there can be at most one pair
〈k1, v1〉 present in the dictionary at one certain moment of
time wherev = v1. Given by Lemma 6 we know that the
algorithm will pass by the node with keyk1 if 〈k1, _〉 ∈
Lt1 at the time of traversal, and that all keys in the possible
range of keys will be passed by as we start traversing from
the lowest key and that the Skiplist is ordered.

If during the execution,key1 < k1 < key2, then if the
check in line V13 succeeds, the state-read point is the read
sub-operation in line V9, otherwise if the check in line V13
fails, the state-read point is the hidden read sub-operation



of the next pointer of nodenode1 in theREAD_NODE
function in line N2 or N5 (from V15). The state of the list
(Lt1 ) directly before passing the state-read point must have
been〈k1, v1〉 6∈ Lt1 . Consequently, the linearizability point
will be the state-read point.

If during the execution,key2 = k1 and thevalue field
of nodenode2 was not equal tov in line V24, then the
state-read point will be the read sub-operation of thevalue
field in line V24. The state of the list (Lt1 ) directly before
passing the state-read point must have been〈k1, v1〉 6∈ Lt1 .
Consequently, the linearizability point will be the state-read
point.

As all operations on shared memory as read, write and
atomic primitives, are atomic, they can be totally ordered.
If during the execution,key2 = k1 and thevalue field
of nodenode2 was marked in line V24, the linearizability
point will be the concurrent successful CAS sub-operation
on the samevalue field in line D8 that can be ordered be-
fore the read sub-operation in line V24, and after the read
sub-operation of thehead node in line V2. If no such con-
current CAS sub-operation exists, the linearizability point
will be the read sub-operation of thehead node in line V24.
The state of the list (Lt1) directly after passing the lineariz-
ability point must have been〈k1, v1〉 6∈ Lt1 . 2

Lemma 15 A DeleteV alue operation which succeeds
(DV (v) = k), takes effect atomically at one statement.

Proof: The decision point for aDeleteV alue operation
which succeeds (DV (v) = k) is when the CAS sub-
operation in line D8 (from V26) succeeds. The state of
the list (Lt) directly before passing of the decision point
must have been〈k, v〉 ∈ Lt, otherwise the CAS would have
failed. The state of the list directly after passing the decision
point will be 〈k, v〉 6∈ Lt. Consequently, the linearizability
point will be the CAS sub-operation in line D8. 2

Lemma 16 A DeleteV alue operation which fails
(DV (v) = ⊥), takes effect atomically at one statement.

Proof: The proof is the same as forFindV alue, see
Lemma 14. 2

Definition 7 We define the relation⇒ as the total order
and the relation⇒d as the direct total order between all
operations in the concurrent execution. In the following
formulas,E1 =⇒ E2 means that ifE1 holds thenE2 holds
as well, and⊕ stands for exclusive or (i.e.a ⊕ b means
(a ∨ b) ∧ ¬(a ∧ b)):

Op1 →d Op2, 6 ∃Op3.Op1 ⇒d Op3,

6 ∃Op4.Op4 ⇒d Op2 =⇒ Op1 ⇒d Op2 (11)

Op1 ‖ Op2 =⇒ Op1 ⇒d Op2 ⊕ Op2 ⇒d Op1 (12)

Op1 ⇒d Op2 =⇒ Op1 ⇒ Op2 (13)

Op1 ⇒ Op2,Op2 ⇒ Op3 =⇒ Op1 ⇒ Op3 (14)

Lemma 17 The operations that are directly totally ordered
using formula 11, form an equivalent valid sequential exe-
cution.

Proof: If the operations are assigned their direct total order
(Op1 ⇒d Op2) by formula 11 then also the linearizability
point ofOp1 is executed before the respective point ofOp2.
In this case the operations semantics behave the same as
in the sequential case, and therefore all possible executions
will then be equivalent to one of the possible sequential ex-
ecutions. 2

Lemma 18 The operations that are directly totally ordered
using formula 12 can be ordered unique and consistent, and
form an equivalent valid sequential execution.

Proof: Assume we order the overlapping operations ac-
cording to their linearizability points. As the state before as
well as after the linearizability points is identical to the cor-
responding state defined in the semantics of the respective
sequential operations in formulas 1 to 10, we can view the
operations as occurring at the linearizability point. As the
linearizability points consist of atomic operations and are
therefore ordered in time, no linearizability point can oc-
cur at the very same time as any other linearizability point,
therefore giving a unique and consistent ordering of the
overlapping operations. 2

Lemma 19 With respect to the retries caused by synchro-
nization, one operation will always do progress regardless
of the actions by the other concurrent operations.

Proof: We now examine the possible execution paths of our
implementation. There are several potentially unbounded
loops that can delay the termination of the operations. We
call these loops retry-loops. If we omit the conditions
that are because of the operations semantics (i.e. search-
ing for the correct position etc.), the loop retries when
sub-operations detect that a shared variable has changed
value. This is detected either by a subsequent read sub-
operation or a failed CAS. These shared variables are only
changed concurrently by other CAS sub-operations. Ac-
cording to the definition of CAS, for any number of concur-
rent CAS sub-operations, exactly one will succeed. This
means that for any subsequent retry, there must be one
CAS that succeeded. As this succeeding CAS will cause its
retry loop to exit, and our implementation does not contain
any cyclic dependencies between retry-loops that exit with
CAS, this means that the correspondingInsert, FindKey,
DeleteKey, FindV alue or DeleteV alue operation will



progress. Consequently, independent of any number of con-
current operations, one operation will always progress.2

Theorem 1 The algorithm implements a lock-free and lin-
earizable dictionary.

Proof: Following from Lemmas 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17 and 18 and using the direct total order we
can create an identical (with the same semantics) sequential
execution that preserves the partial order of the operations
in a concurrent execution. Following from Definition 3, the
implementation is therefore linearizable. As the semantics
of the operations are basically the same as in the Skiplist [9],
we could use the corresponding proof of termination. This
together with Lemma 19 and that the state is only changed
at one atomic statement (Lemmas 1,7,8,11,15), gives that
our implementation is lock-free. 2

5 Experiments

We have performed experiments on both the limited set
of operations on a dictionary (i.e. theInsert, FindKey
andDeleteKey operations), as well as on the full set of op-
erations on a dictionary (i.e. also including theFindV alue
andDeleteV alue operations).

In our experiments with the limited set of operations on
a dictionary, each concurrent thread performed 20000 se-
quential operations, whereof the first 50 up to 10000 of
the totally performed operations areInsert operations, and
the remaining operations was randomly chosen with a dis-
tribution of 1/3 Insert operations versus 1/3FindKey
and 1/3DeleteKey operations. For the systems which
also involves preemption, a synchronization barrier was per-
formed between the initial insertion phaes and the remain-
ing operations. The key values of the inserted nodes was
randomly chosen between0 and1000000 ∗ n, where n is
the number of threads. Each experiment was repeated 50
times, and an average execution time for each experiment
was estimated. Exactly the same sequential operations were
performed for all different implementations compared. Be-
sides our implementation, we also performed the same ex-
periment with the lock-free implementation by Michael [6]
which is the most recently claimed to be one of the most
efficient concurrent dictionaries existing.

Our experiments with the full set of operations on a dic-
tionary, was performed similarly to the experiments with
the limited set of operations, except that the remaining
operations after the insertion phase was randomly chosen
with a distribution of 1/3Insert operations versus 15/48
FindKey, 15/48DeleteKey, 1/48FindV alue and 1/48
DeleteV alue operations. Each experiment was repeated
10 times. Besides our implementation, we also performed

the same experiment with a lock-based implementation of
Skiplists using a single global lock.

The Skiplist-based implementations have a fixed level of
10, which corresponds to an expected optimal performance
with an average of 1024 nodes. All lock-based implementa-
tions are based on simple spin-locks using the TAS atomic
primitive. A clean-cache operation was performed just be-
fore each sub-experiment using a different implementation.
All implementations are written in C and compiled with the
highest optimization level, except from the atomic primi-
tives, which are written in assembler.

The experiments were performed using different num-
ber of threads, varying from 1 to 30. To get a highly pre-
emptive environment, we performed our experiments on a
Compaq dual-processor 450 MHz Pentium II PC running
Linux. In order to evaluate our algorithm with full con-
currency we also used a SGI Origin 2000 system running
Irix 6.5 with 64 195 MHz MIPS R10000 processors. The
results from these experiments are shown in Figures 9 and
10 . The average execution time is drawn as a function of
the number of threads. Observe that the scale is different
on each figure in order to clearify the experiments on the
individual implementations as much as possible. For the
SGI system and the limited set of operations, our lock-free
algorithm shows a negative time complexity with respect
to the size, though for the full set of operations the perfor-
mance conforms to be averagely the same independently of
the size. Our conjecture for this behavior is that the perfor-
mance of the ccNUMA memory model of the SGI system
increases significantly when the algorithm works on disjoint
parts of the memory (as will occur with large sizes of the
dictionary), while the time spent by the search phase of the
operation will vary insignificantly because of the expected
logarithmic time complexity. On the other hand, for the
full set of operations, there will be corresponding perfor-
mance degradation because of the linear time complexity
for the value oriented operations. However, for the algo-
rithm by Michael [6] the benefit for having disjoint access
to the memory is insignificant compared to the performance
degradation caused by the linear time complexity.

Our lock-free implementation scales best compared to
the other implementation, having best performance for real-
istic sizes and any number of threads, i.e. for sizes larger or
equal than 500 nodes, independently if the system is fully
concurrent or involves a high degree of pre-emptions. On
scenarios with the full set of operations our algorithm per-
forms better than the simple lock-based Skiplist for more
than 3 threads on any system.

6 Conclusions

We have presented a lock-free algorithmic implemen-
tation of a concurrent dictionary. The implementation is



0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Threads

Dictionary with High Contention - SGI MIPS, 64 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

5000

10000

15000

20000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Threads

Full Dictionary - SGI MIPS, 64 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Threads

Dictionary with High Contention - SGI MIPS, 64 Processors

LOCK-FREE MICHAEL 50
LOCK-FREE MICHAEL 100
LOCK-FREE MICHAEL 200
LOCK-FREE MICHAEL 500
LOCK-FREE MICHAEL 1000
LOCK-FREE MICHAEL 2000
LOCK-FREE MICHAEL 5000
LOCK-FREE MICHAEL 10000

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Threads

Full Dictionary - SGI MIPS, 64 Processors

LOCK-BASED SKIPLIST 50
LOCK-BASED SKIPLIST 100
LOCK-BASED SKIPLIST 200
LOCK-BASED SKIPLIST 500
LOCK-BASED SKIPLIST 1000
LOCK-BASED SKIPLIST 2000
LOCK-BASED SKIPLIST 5000
LOCK-BASED SKIPLIST 10000

Dictionary with High Contention - SGI MIPS, 64 Processors

NEW ALGORITHM
LOCK-FREE MICHAEL

0 5 10 15 20 25 30
Threads 100

1000

10000

Size
0

5000
10000
15000
20000
25000
30000
35000
40000

Execution Time (ms)

Full Dictionary - SGI MIPS, 64 Processors

NEW ALGORITHM
LOCK-BASED SKIPLIST

0 5 10 15 20 25 30
Threads 100

1000

10000

Size
0

5000
10000
15000
20000
25000
30000
35000
40000

Execution Time (ms)
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Figure 10. Experiment with dictionaries and high contention on Linux Pentium II, initialized with
50,100,...,10000 nodes



based on the sequential Skiplist data structure and builds on
top of it to support concurrency and lock-freedom in an effi-
cient and practical way. Compared to the previous attempts
to use Skiplists for building concurrent dictionaries our al-
gorithm is lock-free and avoids the performance penalties
that come with the use of locks. Compared to the previ-
ous non-blocking concurrent dictionary algorithms, our al-
gorithm inherits and carefully retains the basic design char-
acteristic that makes Skiplists practical: logarithmic search
time complexity. Previous non-blocking algorithms did not
perform well on dictionaries with realistic sizes because of
their linear or worse search time complexity. Our algorithm
also implements the full set of operations that is needed in
a practical setting.

An interesting future work would be to investigate if it
is suitable and how to change the Skiplist level reactively
to the current average number of nodes. Another issue is
how to choose and change the lengths of the fast jumps in
order to get maximum performance of theFindValueand
DeleteValueoperations.

We compared our algorithm with the most efficient non-
blocking implementation of dictionaries known. Experi-
ments show that our implementation scales well, and for
realistic number of nodes our implementation outperforms
the other implementation, for all cases on both fully concur-
rent systems as well as with pre-emption.

We believe that our implementation is of highly practical
interest for multi-threaded applications.
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