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Abstract non-blocking algorithms for shared data objects. Non-
blocking methods do not involve mutual exclusion, and
We present an efficient and practical lock-free implemen- therefore do not suffer from the problems that blocking
tation of a concurrent dictionary that is suitable for both can cause. Non-blocking algorithms are either lock-free
fully concurrent (large multi-processor) systems as well or wait-free. Lock-free implementations guarantee that re-
as pre-emptive (multi-process) systems. Many algorithmsgardless of the contention caused by concurrent operations
for concurrent dictionaries are based on mutual exclusion. and the interleaving of their sub-operations, always at least
However, mutual exclusion causes blocking which has sev-one operation will progress. However, there is a risk for
eral drawbacks and degrades the system’s overall perfor- starvation as the progress of other operations could cause
mance. Non-blocking algorithms avoid blocking, and are one specific operation to never finish. This is although dif-
either lock-free or wait-free. Our algorithm is based on the ferent from the type of starvation that could be caused by
randomized sequential list structure called Skiplist, and im- blocking, where a single operation could block every other
plements the full set of operations on a dictionary that is operation forever, and cause starvation of the whole system.
suitable for practical settings. In our performance evalua- Wait-free [4] algorithms are lock-free and moreover they
tion we compare our algorithm with the most efficient non- avoid starvation as well, in a wait-free algorithm every op-
blocking implementation of dictionaries known. The exper- eration is guaranteed to finish in a limited number of steps,
imental results clearly show that our algorithm outperforms regardless of the actions of the concurrent operations. Non-
the other lock-free algorithm for dictionaries with realistic blocking algorithms have been shown to be of big practical
sizes, both on fully concurrent as well as pre-emptive sys-importance [15, 16], and recently NOBLE, which is a non-
tems. blocking inter-process communication library, has been in-
troduced [13].

There exist several algorithms and implementations of
1 Introduction concurrent dictionaries. The majority of the algorithms are
lock-based, constructed with either a single lock on top of
Dictionaries (also called sets) are fundamental data @ §equentigl algorithm, or specially constructed algorithms
structures. From the operating system level to the user apYS'"Y multiple locks, where each lock protects a small part
plication level, they are frequently used as basic compo- of thg shared data structure. However_, most lock-based
nents. algorithms [2] are based on the theoretical PRAM model
Consequently, the design of efficient implementations of wh|c_h 1S shovyn.to be gnre_ahst_m [1]. As the segrch com-
dictionaries is a research area that has been extensively reQIeX'ty of a dictionary is significant, most algorlthms are
searched. A dictionary supports five operations Jthe:r, based on tree .or.heap struc'_[ures as well as treg—lllke sttruc-
the FindKey, the DeleteKey, the FindValue and the tures as the Skiplist [9]. Previous non-b.locklng dlct|onar|es.
DeleteValue operation. The abstract definition of a dic- &€ though based on arrays or ordered I'Sts_ as done by Va_1I0|s
tionary is a set of key-value pairs, where the key is an [17]. The path using concurrent ordered lists has_ be_gn im-
unique integer associated with a value. Thesert oper- proved by Harris [3], and lately [6] presented a significant

ation inserts a new key-value pair into the dictionary and IMProvement by using a new memory management method

the Find K eyl Delete K ey operation finds/removes and re- [7]. Howev_er, Valois [17] presgnted an incomplete idea of
turns the value of the key-value pair with the specified key how to design a concurrent Skiplist.

that was in the dictionary. ThEindV aluel/DeleteV alue One common problem with many algorithms for concur-
operation finds/removes and returns the key of the key-valuerént dictionaries is the lack of precise defined semantics of
pair with the specified value that was in the dictionary. the operations. Previously known non-blocking dictionar-

To ensure consistency of a shared data object in a concuries only implements a limited set of operations, disregard-
rent en\/ironment, the most common method is to use mu-ing the F'indV alue andDeleteV alue Operations. Itis also
tual exclusion, i.e. some form of locking. Mutual exclusion Seldom that the correctness with respect to concurrency is
degrades the system’s overall performance [12] as it cause®roved, using a strong property like linearizability [5].
blocking, i.e. other concurrent operations can not make any In this paper we present a lock-free algorithm of a con-
progress while the access to the shared resource is blockedurrent dictionary that is designed for efficient use in both
by the lock. Using mutual exclusion can also cause dead-pre-emptive as well as in fully concurrent environments. In-
locks, priority inversion (which can be solved efficiently on spired by the incomplete attempt by Valois [17], the algo-
uni-processors [11] with the cost of more difficult analysis, rithm is based on the randomized Skiplist [9] data struc-
although not as efficient on multiprocessor systems [10]) ture. It is also implemented using common synchroniza-
and even starvation. tion primitives that are available in modern systems. The

To address these problems, researchers have proposealgorithm is described in detail later in this paper, and the
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Figure 1. Example of a Hash Table with Dic- Figure 2. Shared Memory Multiprocessor Sys-
tionaries as branches. tem Structure

2 System Description

aspects concerning the underlying lock-free memory man-
agement are also presented. The precise semantics of the A typical abstraction of a shared memory multi-
operations are defined and we give a proof that our imple-processor system configuration is depicted in Figure 2.
mentation is lock-free and linearizable. Each node of the system contains a processor together with
its local memory. All nodes are connected to the shared
emory via an interconnection network. A set of co-
g]perating tasks is running on the system performing their
. i . respective operations. Each task is sequentially executed
§ett|ng, the average size of e"?‘Ch branch is com.parably_low,on one of the processors, while each processor can serve
€. less than 10 nodgs, as in [6]. However, in prac.tlcgll (run) many tasks at a time. The co-operating tasks, possi-
settings the average size of each branch can vary Slgnlfl'bly running on different processors, use shared data objects

cantly. For example, a hash table can be used to represeniit in the shared memory to co-ordinate and communi-

the word_s Of. a book, vyhere each _braT‘Ch contains the W.Or.dscate. Tasks synchronize their operations on the shared data
that begin with a certain letter, as in Figure 1. Therefore it is

- . L objects through sub-operations on top of a cache-coherent
not unreasonable to expect dictionaries with sizes of severalShared memory. The shared memory may not though be
thousands nodes. )

uniformly accessible for all nodes in the system; some pro-

We have performed experiments that compare the per-C€SSOrs can have slower access than the others.
formance of our algorithm with one of the most efficient
implementat_ions of nqn-blogking d_ictionaries known [6]. 3 Algorithm
As the previous algorithm did not implement the full set
of operations of our dictionary, we also performed experi- he algorithm i ) ificati f th
ments with the full set of operations, compared with a sim- The ag(_)m m is an extension and mOQ| Ication of the
ple lock-based Skiplist implementation. Experiments were Parallél Skiplist data structure presented in [14]. The se-
performed on three different platforms, consisting of a mul- quential Skiplist d-atalstructure which was |nyenteq by Pugh
tiprocessor system using different operating systems ano{gl]' l_Jses]: randomlzatrion anq hr?s a pr.obab|l|st|c t|mefcolm-
equipped with either 2 or 64 processors. Our results showP!€Xity of O(log N') where N is the maximum number of el-
that our algorithm outperforms the other lock-free imple- ements in the list. The data structure is basically an ordered

mentation with realistic sizes and number of threads, in both 1St With randomly distributed short-cuts in order to improve
highly pre-emptive as well as in fully concurrent environ- searf:h times, see Figure 3. The maximum height (i.e. the
ments. maximum number of next pointers) of the data structure is

log N. The height of each inserted node is randomized ge-
The rest of the paper is organized as follows. In Sec- ometrically in the way that 50% of the nodes should have
tion 2 we define the properties of the system that our imple- height 1, 25% of the nodes should have height 2 and so on.
mentation is aimed for. The actual algorithm is described To use the data structure as a dictionary, every node contains
in Section 3. In Section 4 we define the precise semanticsa key and its corresponding value. The nodes are ordered in
for the operations on our implementations, as well show- respect of key (which has to be unique for each node), the
ing correctness by proving the lock-free and linearizability nodes with lowest keys are located firstin the list. The fields
property. The experimental evaluation that shows superiorof each node item are described in Figure 6 as it is used in
performance for our implementation is presented in Sectionthis implementation. In all code figures in this section, ar-
5. We conclude the paper with Section 6. rays are indexed starting from 0.

Concurrent dictionaries are often used as building blocks
for concurrent hash tables, where each branch (or bucket) o
the hash table is represented by a dictionary. In an optimal



— function TAS(valuepointer to word):boolean
il E— — g e g atomic do
1> > & > > if *value=0then
i e e E — = 1> *value:=1;
H| 1] B BRE return true ;

else return false

procedure FAA(addressointer to word, numberinteger)
atomic do
*address := *address + number;

Figure 3. The Skiplist data structure with 5
nodes inserted.

function CAS(addresgointer to word, oldvalueword
L e e — .E , newvalugNord):boolean
atomic do
if *address = oldvaluéhen
*address := newvalue;
Inserted node return true ;
else return false

Figure 4. Concurrent insert and delete opera- )
tion can delete both nodes. Figure 5. The Test-And-Set (TAS), Fetch-And-

Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

In order to make the Skiplist construction concurrent and
non-blocking, we are using three of the standard atomic
synchronization primitives, Test-And-Set (TAS), Fetch- pointer of this previous node atomically with CAS, to point
And-Add (FAA) and Compare-And-Swap (CAS). Figure to the new node, and then immediately afterwards the pre-
5 describes the specification of these primitives which areyious node is deleted - then the new node will be deleted as

available in most modern platforms. well, as illustrated in Figure 4. There are several solutions
to this problem. One solution is to use the CAS2 opera-
3.1 Memory Management tion as it can change two pointers atomically, but this oper-

ation is not available in any existing multiprocessor system.
As we are concurrently (with possible preemptions) A second solution is to insert auxiliary nodes [17] between
traversing nodes that will be continuously allocated and each two normal nodes, and the latest method introduced by
reclaimed, we have to consider several aspects of mem-Harris [3] is to use one bit of the pointer values as a dele-
ory management. No node should be reclaimed and thertion mark. On most modern 32-bit systems, 32-bit values
later re-allocated while some other process is traversing thiscan only be located at addresses that are evenly dividable
node. This can be solved for example by careful referenceby 4, therefore bits 0 and 1 of the address are always set to
counting. We have selected the lock-free memory man-zero. The method is then to use the previously unused bit
agement scheme invented by Valois [17] and corrected byO of the next pointer to mark that this node is about to be
Michael and Scott [8], which makes use of the FAA and deleted, using CAS. Any concurrehtsert operation will
CAS atomic synchronization primitives. then be notified about the deletion, when its CAS operation
To insert or delete a node from the list we have to changewill fail.
the respective set of next pointers. These have to be changed Another memory management issue is how to de-
consistently, but not necessary all at once. Our solution is toreference pointers safely. If we simply de-reference the
have additional information on each node about its deletion pointer, it might be that the corresponding node has been
(or insertion) status. This additional information will guide reclaimed before we could access it. It can also be that
the concurrent processes that might traverse into one parbit O of the pointer was set, thus marking that the node is
tially deleted or inserted node. When we have changed alldeleted, and therefore the pointer is not valid. The follow-
necessary next pointers, the node is fully deleted or inserteding functions are defined for safe handling of the memory
One problem, that is general for non-blocking imple- management:
mentations that are based on the linked-list structure, arises
when inserting a new node into the list. Because of the function MALLOC_NODE():pointer to Node
linked-list structure one has to make sure that the previous function READ_NODE (addrespbinter to pointer to Node)
node is not about to be deleted. If we are changing the nextpointer to Node



structure Node

key,level,validLevel,versioninteger
value :pointer to word
next[level],prev :pointer to Node

// Global variables

head,tail :pointer to Node
/I Local variables (for all functions/procedures) S13
nodel,node2,newNode,savedNodes[maxlevelpbjnter to Node S14

S7
S8
S9
S10
Si11

S12

*last:=HelpDelete(*last,level);
nodel:=*last;
else ifnode2.keykeythen
COPY_NODE(nodel);
if (nodel.validLevel>levebr nodel=*lasior nodel=stop)
and nodel.key<kewnd nodel.key (*last).keythen
if nodel.validLevetlevelthen
RELEASE_NODE(nodel);
nodel:=COPY_NODE(*last);
node2:=ScanKey(&nodel,level key);
RELEASE_NODE(node2);
return nodel;
RELEASE_NODE(nodel);
stop:=nodel;
if IS_MARKED((*last).value)then
*last:=HelpDelete(*last,level);
nodel:=*last;
else ifnode2.key (*last).keythen
nodel:=node2;
else
if IS_MARKED((*last).value)then
*last:=HelpDelete(*last,level);
nodel:=*last;

function Insert(keyinteger, valuepointer to word):boolean

prev,last,stop pointer to Node S15
key1l,key2,step,jump,version,versionteger S16
S17
function CreateNode(levehteger, keyinteger, S18
valuepointer to word):pointer to Node S19
Cl1 node:=MALLOC_NODE(); S20
C2 node.prev:=NULL; S21
C3 node.validLevel:=0; S22
C4 node.level:=level, S23
C5 node.key:=key; S24
C6 node.value:=value; S25
C7 return node; S26
S27
procedure ReleaseReferences(nopeinter to Node) S28
R1 node.validLevel:=0;
R2 if node.prevthen
R3 prev:=node.prev; 11
R4 node.prev:=NULL; 12
R5 RELEASE_NODE(prev); 13
14

function ReadNext(nodeppinter to pointer to Node, levelinteger) 15

:pointer to Node 16
N1 if IS_MARKED((*nodel).valuejhen 17
*nodel:=HelpDelete(*nodel,level);
N2 node2:=READ_NODE((*nodel).next[level]); 18
N3 while node2=NULLdo 19
N4 *nodel:=HelpDelete(*nodel,level); 110
N5 node2:=READ_NODE((*nodel).next[level]); 111
N6 return node2; 112
113

function ScanKey(nodepointer to pointer to Node, levelinteger 114

, keyinteger):pointer to Node 115
K1 node2:=ReadNext(hodel,level); 116
K2 while node2.key < keylo 117
K3  RELEASE_NODE(*nodel); 118
K4 *nodel:=node2; 119
K5 node2:=ReadNext(nodel,level); 120
K6 return node2; 121

122
function SearchLevel(lagbointer to pointer to Node, 123
levelinteger, keyinteger): pointer to Node 124
S1 nodel:=*last; 125
S2 stop:=NULL; 126
S3  while true do 127
S4 node2:=GET_UNMARKED(nodel.next[level]); 128
S5 if node2=NULLthen 129
S6 if nodel=*lasthen

Choose level randomly according to the Skiplist distribution
newNode:=CreateNode(level key,value);
COPY_NODE(newNode);

savedNodes[maxLevel]:=head;

for i:=maxLevel-1to O step-1 do

savedNodes[i]:=SearchLevel(&savedNodes[i+1],i,key);
if maxLevel-1>i>level-1then
RELEASE_NODE(savedNodes[i+1]);

nodel:=savedNodes[0];
while true do

node2:=ScanKey(&nodel,0,key);
value2:=node2.value;
if not IS_MARKED(value2)and node2.key=keyhen
if CAS(&node2.value,value2,valut)en
RELEASE_NODE(nodel);
RELEASE_NODE(node2);
for i:=1to level-1do
RELEASE_NODE(savedNodesli]);
RELEASE_NODE(newNode);
RELEASE_NODE(newNode);
return trues;
else
RELEASE_NODE(node2);
continue;
newNode.next[0]:=node2;
RELEASE_NODE(node2);
if CAS(&nodel.next[0],node2,newNodien
RELEASE_NODE(nodel);
break;
Back-Off

130 newNode.version:=newNode.version+1;

Figure 6. The algorithm, part 1(3).



131 newNode.validLevel:=1; D15 return NULL;
132 for i:=1to level-1do D16 for i:=0 to nodel.level-do
133 nodel:=savedNodes]i]; D17 repeat
134 while true do D18 node2:=nodel.next[i];
135 node2:=ScanKey(&nodel,ikey); D19 until IS_MARKED(node2)or CAS(&nodel.next[i],
136 newNode.next[i]:=node2; node2,GET_MARKED(node?2));
137 RELEASE_NODE(node?2); D20 for i:=nodel.level-%o 0 step-1 do
138 if IS_MARKED(newNode.valuethen D21 prev:=savedNodes]i];
139 RELEASE_NODE(nodel); D22  while true do
140 break; D23 if nodel.next[i]=1then break;
141 if CAS(&nodel.next[i],node2,newNod#jen D24 last:=ScanKey(&prev,i,nodel.key);
142 newNode.validLevel:=i+1; D25 RELEASE_NODE(last);
143 RELEASE_NODE(nodel); D26 if last£nodelor nodel.next[i]=1then break;
144 break; D27 if CAS(&prev.next[i],nodel,
145 Back-Off GET_UNMARKED(nodel.next[i])then
146 if IS_MARKED(newNode.valuethen D28 nodel.nexti]:=1;
newNode:=HelpDelete(hewNode,0); D29 break;
147 RELEASE_NODE(newNode); D30 if nodel.next[i]=1then break;
148 return true; D31 Back-Off
D32 RELEASE_NODE(prev);
function FindKey(key:integer):pointer to word D33 for i:=nodel.leveto maxLevel-1do
F1 last:=COPY_NODE(head); D34 RELEASE_NODE(savedNodes]i]);
F2 for i:=maxLevel-1to O step-1 do D35 RELEASE_NODE(nodel);
F3 nodel:=SearchlLevel(&last,i,key); D36 RELEASE_NODE(nodel);
F4 RELEASE_NODE(last); D37 return value;
F5 last:=nodel;
F6 node2:=ScanKey(&last,0,key); function FindValue(valuepointer to word):integer
F7 RELEASE_NODE(last); return FDValue(valugfalse);
F8 value:=node2.value; function DeleteValue(valuepointer to word):integer
F9 if node2.keykeyor IS_MARKED(value)then return FDValue(valugrue);
F10 RELEASE_NODE(node2); function FDValue(valuepointer to word, delete:boolean:integer
F11  return NULL; V1 jump:=16;
F12 RELEASE_NODE(node2); V2 last:=COPY_NODE(head);
F13 return value; next_jump:
V3 nodel:=last;
function DeleteKey(keyinteger):pointer to word V4 keyl:=nodel.key;
return Delete(keyfalse NULL); V5 step:=0;
function Delete(key:integer, delvalboolean V6 while true do
valuepointer to word):pointer to word V7 ok=false
D1 savedNodes[maxLevel]:=head; V8 version:=nodel.version;
D2 for i:=maxLevel-1to O step-1 do V9 node2:=nodel.next[0];
D3 savedNodesJi]:=SearchLevel(&savedNodes[i+1],i,key); V10 if not IS_MARKED(node2)and node24NULL then
D4 nodel:=ScanKey(&savedNodes[0],0,key); V11 version2:=node2.version;
D5 while true do V12 key2:=node2.key;
D6 if not delvalthen value:=nodel.value; V13 if nodel.key=keyhnd nodel.validLevel>@&nd
D7 if nodel.key=kewnd (not delvalor nodel.value=value) nodel.next[0]=nodeand nodel.version=version
and not IS_MARKED(value)then and node2.key=keyand node2.validLevel>@&nd
D8 if CAS(&nodel.value,value, GET_MARKED(valughen node2.version=versiortken ok:=true;
D9 nodel.prev:=COPY_NODE(savedNodes[(nodel.level-1¥2¥; if not ok then
D10 break; V15 nodel:=node2:=ReadNext(&last,0);
D11 else continue V16 keyl:=key2:=node2.key;
D12 RELEASE_NODE(nodel); V17 version2:=node2.version;
D13 for i:=0to maxLevel-1do V18 RELEASE_NODE(last);
D14 RELEASE_NODE(savedNodesli]); V19 last:=node2;

Figure 7. The algorithm, part 2(3).



V20 step:=0; H2 repeat

V21 if node2=taithen H3 node2:=node.next[i];
V22 RELEASE_NODE(last); H4 until IS_MARKED(node2)r CAS(&node.next][i],
V23 return _L; node2,GET_MARKED(node2));
V24  if node2.value=valuthen H5 prev:=node.prev;
V25 if node2.version=versiortden H6 if not prevor level > prev.validLevelthen
V26 if not deleteor Delete(key2rue,value)=valughen H7 prev:=COPY_NODE(head);
V27 RELEASE_NODE(last); H8 elseCOPY_NODE(prev);
V28 return key2; H9 while true do
V29 else if++step>jumpthen H10 if node.next[level]=2hen break;
V30 COPY_NODE(node2); H11 for i:=prev.validLevel-1to level step-1 do
V31 if node2.validLevel=@r node2.keykey2then H12 nodel:=SearchlLevel(&prev,i,node.key);
V32 RELEASE_NODE(node2); H13 RELEASE_NODE((prev);
V33 node2:=ReadNext(&last,0); H14 prev:=nodel;
V34 if jump>4 then jump:=jump/2; H15 last:=ScanKey(&prev,level,node.key);
V35 elsejump:=jump-+jump/2; H16 RELEASE_NODE(last);
V36 RELEASE_NODE(last); H17 if last£ nodeor node.next[level]=xhen break;
V37 last:=node2; H18 if CAS(&prev.next[level],node,
V38 goto next_jump; GET_UNMARKED(node.next[level])}hen
V39 else H19 node.next[level]:=1;
V40 keyl:=key2; H20 break;
V41 nodel:=node2; H21 if node.next[level]=then break;

H22 Back-Off
function HelpDelete(nodgiointer to Node, H23 RELEASE_NODE(node);
levelinteger):pointer to Node H24 return prev;

H1 for i:=levelto node.level-Ido

Figure 8. The algorithm, part 3(3).

function COPY_NODE(nodguointer to Node)pointer to While traversing the nodes, processes will eventually
Node _ reach nodes that are marked to be deleted. As the process
procedure RELEASE_NODE(nodgointer to Node) that invoked the correspondirigeleteoperation might be

pre-empted, thi®eleteoperation has to be helped to finish

The function MALLOC_NODEallocates a new node before the traversing process can continue. However, it is
from the memory pool of pre-allocated nodes aRE-  only necessary to help the part of theleteoperation on the
LEASE_NODEdecrements the reference counter on the current level in order to be able to traverse to the next node.
corresponding given node. If the reference count reachesthe functionReadNextsee Figure 6, traverses to the next
zero, then it calls th®eleaseReferencésnction that will node on the given level while helping any deleted nodes in
call RELEASE_NODEon the nodes that this node has between to finish the deletion. The functiScanKey see
owned pointers to, and then it reclaims the node. The func-Figure 6, traverses in several steps through the next pointers
tion COPY_NODEincreases the reference counter for the at the current level until it finds a node that has the same or
corresponding given node aREAD_NODEde-reference  higher key than the given key. The argument nodel in the
the given pointer and increase the reference counter for theReadNexaind ScanKeyfunctions are continuously updated

corresponding node. In case the de-referenced pointer igo point to the previous node of the returned node.
marked, the function returns NULL.
However, the use of the salReadNexandScanKeyop-

3.2 Traversing erations for traversing the Skiplist, will cause the perfor-
mance to be significantly lower compared to the sequen-
.tial case where the next pointers are used directly. As the

The functions for traversing the nodes are defined as fo ) )
nodes, which are used in the lock-free memory manage-

lows: ment scheme, will be reused for the same purpose when re-
function ReadNext(nodepointer to pointer to Node allocated again after being reclaimed, the individual fields

Jlevelinteger):pointer to Node of the nodes that are not part of the memory management
function Scankey(nodepointer to pointer to Node scheme will be intact. ThealidLevelfield can therefore

Jlevelinteger,keyinteger):pointer to Node be used for indicating if the current node can be used for

possibly traversing further on a certain level. A value of



0 indicates that this node can not be used for traversing atatomically with a CAS. Otherwise, in lines 124-145 it starts
all, as it is possibly reclaimed or not yet inserted. As the trying to insert the new node starting with the lowest level
validLevelfield is only set ta) directly before reclamation increasing up to the level of the new node. The next pointers
in line R1, a positive value indicates that the node is allo- of the (to be previous) nodes are changed atomically with a
cated. A value of: + 1 indicated that this node has been CAS. After the new node has been inserted at the lowest
inserted up to levek. However, the next pointer of level level, it is possible that it is deleted by a concurrBetete

on the node may have been marked and thus indicating poseperation before it has been inserted at all levels, and this
sible deletion at that level of the node. As the node is not is checked in lines 138 and 146. TirndKeyoperation, see
reclaimed thé:ey field is intact, and therefore it is possible Figure 6, basically follows thinsertoperation.

to traverse from the previous node to the current position. TheDeleteoperation, see Figure 6, starts in lines D1-D4
By increasing the reference count of the node before check-with a search phase to find the first node which key is equal
ing thevalidLevelffield, it can be assured that the node stays or higher than the searched key. This search phase starts
allocated if it was allocated directly after the increment. Be- from the head node at the highest level and traverses down
cause the next pointers are always updated to point (regardto the lowest level until the correct node is fountbdel).

less of the mark) either to nothing (NULL) or to a node that When going down one level, the last node traversed on that
is part of the memory management, allocated or reclaimed,level is remembereds@vedNodesfor later use (this is the

it is possible in some scenarios to traverse directly throughprevious node at which the next pointer should be changed
the next pointers. This approach is taken bySlearchLevel  in order to delete the targeted node at that level). If the
function, see Figure 6, which traverses rapidly from an allo- found node is the correct node, it tries to set the deletion
cated nodéast and returns the node whidley field is the mark of thevalue field in line D8 using the CAS primi-
highest key that is lower than the searched key at the currentive, and if it succeeds it also writes a valid pointer (which
level. During the rapid traversal it is checked that the cur- corresponding node will stay allocated until this node gets
rent key is within the search boundaries in line S23 and S11,reclaimed) to therev field of the node in line D9. This
otherwise the traversal restarts from th@t¢ node as this  prev field is necessary in order to increase the performance
indicates that a node has been reclaimed and re-allocatedf concurrentelpDeleteoperations, these otherwise would
while traversed. When the node suitable for returning hashave to search for the previous node in order to complete the
been reached, it is checked that it is allocated in line S11deletion. The next step is to mark the deletion bits of the
and also assured that it then stays allocated in line S10. Ifnext pointers in the node, starting with the lowest level and
this succeeds the node is returned, otherwise the traversajoing upwards, using the CAS primitive in each step, see
restarts at nodéust. If this fails twice, the traversal are lines D16-D19. Afterwards in lines D20-D32 it starts the
done using the safécanKeyoperations in lines S12to S16, actual deletion by changing the next pointers of the previ-
as this indicates that the node possibly is inserted at the curous nodesgrev), starting at the highest level and continuing
rent level, but thevalidLevelfield has not yet been updated. downwards. The reason for doing the deletion in decreas-
In case the nodéust is marked for deletion, it might have ing order of levels, is that concurrent operations that are
been deleted at the current level and thus it can not be usedh the search phase also start at the highest level and pro-
for traversal. Therefore the nodest is checked if it is ceed downwards, in this way the concurrent search opera-
marked in lines S6, S20 and S26. If marked, the node tions will sooner avoid traversing this node. The procedure
will be helped to fully delete on the current level aadt is performed by théeleteoperation in order to change each

set to the previous node. next pointer of the previous node, is to first search for the
previous node and then perform the CAS primitive until it
3.3 Inserting and Deleting Nodes succeeds.

The implementation of thensert operation, see Figure 3-4 Helping Scheme
6, starts in lines 14-110 with a search phase to find the node
after which the new nodenéwNode) should be inserted. The algorithm has been designed for pre-emptive as well
This search phase starts from the head node at the highests fully concurrent systems. In order to achieve the lock-
level and traverses down to the lowest level until the correct free property (that at least one thread is doing progress) on
node is foundifodel). When going down one level, the last pre-emptive systems, whenever a search operation finds a
node traversed on that level is remembersavédNodes node that is about to be deleted, it calls HelpDeleteop-
for later use (this is where we should insert the new node ateration and then proceeds searching from the previous node
that level). Now itis possible that there already exists a nodeof the deleted. ThelelpDeleteoperation, see Figure 8, tries
with the same key as of the new node, this is checked into fulfill the deletion on the current level and returns when it
lines 112-123, the value of the old nodedde2) is changed  is completed. It starts in lines H1-H4 with setting the dele-



tion mark on all next pointers in case they have notbeen set4 Correctness

In lines H5-H6 it checks if the node given in the prev field is

valid for deletion on the current level, otherwise it starts the |, this section we present the proof of our algorithm. We

search at the head node. Inlines H1'1—H16 |t'searches for thej ot prove that our algorithm is a linearizable one [5] and

correct nodegrev). The actual deletion of this node on the then we prove that it is lock-free. A set of definitions that

current level takes place inline H18. Lines H10-H22 willbe | help us to structure and shorten the proof is first ex-

repeated until the node is deleted at the current level. Thisplained in this section. We start by defining the sequential
operation might execute concurrently with the correspond- g mantics of our operations and then introduce two defini-

ing Deleteoperation as well with othelrlelpDeleteoper- tions concerning concurrency aspects in general.
ations, and therefore all operations synchronize with each

other in lines D23, D26, D28, D30, H10, H17, H19 and
H21 in order to avoid executing sub-operations that have

already been performed. . unigque pairs(k, v) consisting of a unique kdyand a cor-
In fully concurrent systems though, the helping strategy responding unique value The operations that can be per-

can downgrade the performance significantly. Therefore theformed on the dictionary arénsert (I), FindKey (FK)
algorithm, after a number of consecutive failed attempts to DeleteKey (DK), FindValue (FV) ’and DeleteValue,
help concurrenDeleteoperations that stops the progress of (DV). The timet,l is defined as the time just before the
the current opera_ttion, puts the current operation into ba_Ck'atomic execution of the operation that we are looking at,
off modg. Wheq n pack—off mpde, _the th.read does nothing and the timet, is defined as the time just after the atomic
for a while, and in this way avoids disturbing the concurrent execution of the same operation. The return valug-of;
operations that might otherwise progress slower. The dura-iS returned by anfnsert operation that has succeeded to
tion of the back-off is proportional to the number of threads, update an existing node, the return valugxofe is returned

and for each consecutive entering of back-off mode during by anInsert operation that succeeds to insert a new node.

one operation invocation, the duration is increased exponeny o following expressions that defines the sequential se-

Definition 1 We denote wittlL; the abstract internal state
of a dictionary at the time. L, is viewed as a set of

tially. mantics of our operations, the syntaxds : Oy, S, where
_ _ S is the conditional state before the operation, and S
3.5 Value Oriented Operations is the resulting state after performing the corresponding op-

eration:
The FindValue and DeleteValueoperations, see Figure
7, traverse from the head node along the lowest level in the
Skiplist until a node with the searched value is found. In ev-

ery traversal step, it has to be assured that the step is taken (k1, ) & Ly, : 11 ((ky,v1)) = true,

from a valid node to a valid node, both valid at the same Li, = L, U{(ky,v1)} (1)
time. ThevalidLevelfield of the node can be used to safely

verify the validity, unless the node has been reclaimed. The (k1,v1,) € Ly, : I1({kq, v1,)) = truea,

version field is incremented by thisertoperation in line Le, = Le, \ {(k1,v1, )} U {(k1,v1,)} 2)
130, after the node has been inserted at the lowest level, and

directly before thevalidLevelis set to indicate validity. By (k1,v1) € Ly, : FKq(ky) =v1 3)
performing two consecutive reads of the-sion field with

the same contents, and successfully verifying the validity (k1,v1) € Ly, : FKq(ka) = L 4)

in between the reads, it can be concluded that the node has
stayed valid from the first read of the version until the suc- (k1,01) € Ly, : DKy (ke) = v1,

cessful validity check. This is done is lines V8-V13. If this Le, = L, \ {(ka, v1)} (5)
fails, it restarts and traverses the safe nade one step

using theReadNexfunction in lines V14-V21. After a cer- (ki v1) & L, - DK (ka) = L ®)
tain number {ump) of successful fast steps, an attempt to ) _

advance théast node to the current position is performed (o) € Le, : FVa(va) = ko 0
in lines V29-V38. If this attempt succeeds, the threshold (k1,v1) € Ly, : FV1(v1) =1 (8)
jump is increased by 1 1/2 times, otherwise it is halved.

The traversal is continued until a node with the searched (k1,v1) € Ly, : DV1(v1) =kq,

value is reached in line V24 or that the tail node is reached Le, = Ly, \ {(k1,v1)} (9)

in line V21. In case the found node should be deleted, the
Deleteoperation is called for this purpose in line V26. (k1,v1) € Ly, : DVq(vy) =1 (20)



Note that the operations will work correctly also if relax- nodes can only be allocated again for the same purpose,
ing the condition that values are unique. However, the re- we know that there is a fixed number of nodes that will be
sults of theFindV alue and DeleteV alue operations will used with the Skiplist, and that the individual fields (like
be undeterministic in the sense that it is not decidable whichkey, value, next etc.) of the nodes are only changed by the
key value that will be returned in the presence of several operations of this algorithm.
key-value pairs with the same value. In the case of the
DeleteV alue operation, still only one pair will be removed. Definition 5 A node that is used in the Skiplist is defined
asvalid if the node is inserted at the lowest level, i.e. there
is a next pointer on any other valid node that points (dis-
regarding the eventual mark) to this node, or the node the
validLevel field set to higher than zero and has been fully
deleted but not yet been reclaimed. All other nodes are de-
fined asinvalid, i.e. the node is reclaimed, or has been al-
located but not yet inserted at the lowest level. A node that
is used in the Skiplist is definedealid at level iif the node

Definition 2 In a global time model each concurrent op-
eration Op “occupies” a time intervallbo,, fop] on the
linear time axis(bo, < fop). The precedence relation
(denoted by =) is a relation that relates operations of
a possible executior)p; — Op, means thaDp,; ends
beforeOp, starts. The precedence relation is a strict par-
tial order. Operations incomparable under are called

overlapping The overlapping relation is denoted byand g inserted at level, i.e. there is a next pointer at levebn

is commutative, i.e.Op; || Ops and Opy || Opi. The  any gther valid node that points (disregarding the eventual
precedence relation is extended to relate sub-operatlonsmark) to this node, or the node has theid Level field set

of operations. Consequently, @p; — Op,, then for  pigher thani and has been fully deleted but not yet been
any sub-operationsp; and op, of Op; and Ops, respec- reclaimed.

tively, it holds thatop; — ops. We also define the di-
rect precedence relatior-,4, such that ifOp; —4Ops, then
Op1 — Op, and moreover there exists no operatiomps
such thatOp; — Op3z — Ops.

An interesting observation of the previous definition is
that if a node is present in the abstract internal siatiken
it is also valid, and that if a node is valid then also the indi-

Definition 3 In order for an implementation of a shared Vidualfields of the node are valid.

concurrent data object to be linearizable [5], for every con- ) ) _

current execution there should exist an equal (in the sense-€mma 2 A valid node with a increased reference count,
of the effect) and valid (i.e. it should respect the semanticsCan always be used to continue traversing from, even if the
of the shared data object) sequential execution that respectdode is deleted.

the partial order of the operations in the concurrent execu- ) o ) )
tion. Proof: For every instruction in the algorithm that in-

crements the reference count (i.e. tR&ZAD_NODE

Next we are going to study the possible concurrent exe-andCOPY _NODE functions), there exists a correspond-
cutions of our implementation. First we need to define the ing instruction that decrements the reference count equally
interpretation of the abstract internal state of our implemen-much (i.e. theRELEASE _NODE function). This means
tation. that if the reference count has been incremented, that the

. . . . reference count can not reach zero (and thus be reclaimed)
Definition 4 The pair (k, v) is present (k,v) € L)inthe il the corresponding decrement instruction is executed.
abstract internal statd. of our implementation, when there 5 node with a increased reference count can thus not be

is a next pointer from a present node on the lowest level roq|aimed, unless it already was reclaimed before the refer-
of the Skiplist that points to a node that contains the pair o,ce count was incremented. As the node is valid, the key

(k,v), and this node is not marked as deleted with the mark ¢jg|q j5 also valid, which means that we know the absolute
on the value. position in the Skiplist. If the node is not deleted the next

Lemma 1 The definition of the abstract internal state for POINters can be used for traversing. Otherwise it is always

our implementation is consistent with all concurrent opera- POSSible to get to the previous node by searching from the
tions examining the state of the dictionary. head of the Skiplist using the key, and traverse from there.
0

Proof: As the next and value pointers are changed using

the CAS operation, we are sure that all threads see the SaMEamma 3 The nodeodel that is found in line S17 of the

;tate of the Skiplist, and therefor-e all changes of the abStraCtSearchLevel function, is a valid node with a increased ref-

internal state seems to be atomic. erence count and will therefore not be reclaimed by concur-
As we are using a lock-free memory management rent tasks, and is (or was) the node with the nearest key that

scheme with a fixed memory size and where reclaimedis lower than the searched key.



Proof: The reference count is incremented in line S10 be- Lemma 6 The functionsFindV alue and DeleteV alue
fore the check for validity in line S11, which means that will not skip any nodes while traversing the Skiplist from
if the validity test succeeds then the node will stay valid. left to right, and will therefore traverse through all nodes
ThevalidLevel field of a node is set in lines 131 and 142 that was present in the Skiplist at the start of the traversing
to the current level plus one after each successful step ofand which was still present while traversed.
the Insert operation, and is set to zero in line R1 just be-
fore the node is fully deleted and will be reclaimed. This Proof: In order to safely move fromodel to node2, it has
means that if thealid Level field is more than the current  to be assured that both nodes are valid andthat1 has
level, that the node is valid. Alternatively if the node is the been pointing towode2 at the lowest level while both were
same as a known valid nodest, then itis also valid. Ifthe ~ Vvalid, and thatwodel is at the current position (i.e. they
node is valid, it is also checked that the key value is lower field). If this holds we can conclude thabde2 is, or was
than was searched for. Before the validity check, the nextat the time of starting the traversal, the very next node of
node ofnodel was read asode2 in line S4 and its key was ~ nodel. These properties are checked in line V13, where
checked to be more than or equal to the searched key in linghe validity is confirmed to have hold during the check of
S9. This means that the nodedel in line S17 is valid and  the other properties by that thersion fields of both nodes
was (or still is) the node with the nearest key that is lower were the same as in lines V8 and V11 before checking the
than the searched key. O validity using thevalid Level field. If the check in line V13
failed, thennode2 will be set to the next node éfi.st using
) o the Read N ext function, which position is between the pre-
Lemma 4 The nodenode2 that is found in line V26 of the jo5ly known safe nodkst and the current position along
Fdealue and DeleteValue funpnons, was presentdur-  hq searchpath. Given by Lemma 5, when the nhde
ing the read of its value and this value was the same asig ypdated, it is always set to a valid node with a position
searched for. between the next node of the previously known safe node
last and the current position along the searchpath. Conse-
Proof: The Delete operation marks the value before it quently, the functions”indV alue and DeleteV alue will

starts with marking the next pointers and removing the nodenot skip any nodes while traversing the Skiplist from left to
from the Skiplist. A node that is valid and the value is non- yight, O

marked, is therefore present in the dictionary as the node
must be inserted at the lowest level and not yet deleted. Th
node was valid in line V13 as theilid Level field was pos-
itive. The version field is only incremented in line 130,
directly before thevalid Level field becomes positive. As
the version was the same before the check for validity in
line V13 as well as after the check for equalness and valid-
ity in V24, this means that the node has been valid all the
time.

Definition 6 The decision point of an operation is defined
as the atomic statement where the result of the operation is
finitely decided, i.e. independent of the result of any sub-
operations after the decision point, the operation will have
the same result. We define the state-read point of an opera-
tion to be the atomic statement where the state of the dictio-
nary, which result the decision point depends on is read. We
also define the state-change point as the atomic statement
where the operation changes the abstract internal state of
Lemma 5 The nodenode? that is found in line V37 of the  the dictionary after it has passed the corresponding deci-
FindV alue and DeleteV alue functions, is a valid node at ~ sion point.

the current, or between the previously known safe riage

and the current position along the searchpath. The node We will now use these points in order to show the ex-

also has a increased reference count and will therefore notiStance and location in execution history of a point where
be reclaimed by concurrent tasks. the concurrent operation can be viewed as it occured atom-

ically, i.e. thelinearizability point

Proof: The reference count is incremented in line V30 be-
fore the check for validity in line V31, which means that if
the validity test succeeds then the node will stay valid. The
validity check follows Lemma 3. If the node was not valid
or the key of the .node did not.match the current position in Proof: The decision point for ansert operation which
the ;earchpath (i.e. the key flelq has changed due to reCIa'succeeds I(k,v)) = true), is when the CAS sub-
mation of the nodg before the increment of the referenceoperaﬂOn in line 126 (see Figure 6) succeeds, all follow-
count) themode2 will be set to the next node éfist using ing CAS sub-operations will eventually succeed, and the

the ReadNext function. Insert operation will finally returntrue. The state of the

Lemma7 An Insert operation which succeeds
(I((k,v)) = true), takes effect atomically at one
statement.



list (L.,) directly before the passing of the decision point the list (L;) directly before passing of the decision point
must have beerk, ) ¢ L., otherwise the CAS would must have bee(¥,v) € L, otherwise the CAS would have
have failed. The state of the list directly after passing the failed. The state of the list directly after passing the decision
decision point will be(k, v) € L;,. Consequently, the lin-  point will be (k,v) ¢ L;. Consequently, the linearizability

earizability point will be the CAS sub-operation in line 126. point will be the CAS sub-operation in line D8. a
O
Lemma 12 A DeleteKey operations which fails
Lemma8 An Insert operation which updates (DK(k) = 1), takes effect atomically at one state-
(I((k,v)) = truey), takes effect atomically at one ment.
statement.

Proof: The decision point for aDeleteKey operation
Proof: The decision point for adnsert operation which  \which fails (DK (k) = 1), is when the check for key equal-
updates [((k,v)) = trues), is when the CAS will suc- ity fails or when the check for non-marked value in line D7
ceed in line 113. The state of the list{ ) directly before  fajis. If the key equality in line D7 fails, the state-read point
passing the decision point must have b@en) € L¢,, oth- s the read sub-operation #EAD_NODE in line N2 or
erwise the CAS would have failed. The state of the list di- N5 (from K1 or K5' from D4) when the next pointer at low-
rectly after passing the decision point will b, v) € Li,. est level of the previous node is read. If the check for non-
Consequently, the linearizability point will be the CAS sub- marked value in line D7 fails, the state-read point is the read
operation in line 113. O sub-operation of thealue field in line D6. In both cases,

the state of the listl{;,) directly before passing the state-
Lemma9 A FindKey operation which succeeds read point must have beéh,v) ¢ L,;,. Consequently, the
(F'K (k) = v), takes effect atomically at one statement. linearizability point will be either of the state-read points.

Proof: The decision point for &'ind K ey operation which =

succeedsK K (k) = v), is when the check for marked value ) . i
in line F9 fails. The state-read point is when the value of LéMMa 13 A FindValue operation which succeeds
the node is read in line F8. As they field of the node can  (F'V (v) = k), takes effect atomically at one statement.
not change concurrently, the state of the list,{ directly
before passing the state-read point must have bear)
L., . Consequently, the linearizability point will be the read
sub-operation of thealue field in line F8. O

Proof: The decision point for aF'indV alue operation
which succeedsKV (v) = k), is when the check for valid
node (and also a validalue field in line V24) in line V25
succeeds. The state-read point is whendthkee field is
readinline V24. As thé&ey field of the node can not change
concurrently and as given by Lemma 4, the state of the list
(L4,) directly before passing the state-read point must have

Proof: The decision point for #'indK ey operation which ~ been(k,v) € L;,. Consequently, the linearizability point
fails (FK (k) = L), is when the check for key equality fails will be the read sub-operation of thelue field in line V24,
or when the check for marked value in line F9 succeeds. If U
the key equality in line F9 fails, the state-read point is the

read sub-operation adREAD NODE in line N2 or N5 Lemmal4 A FindValue operation which fails
(from K1 or K5, from F6) when the next pointer at lowest (FV (v) = 1), takes effect atomically at one statement.
level of the previous node is read. If the check for marked
value in line F9 succeeds, the state-read point is the rea
sub-operation of thealue field in line F8. In both cases,
the state of the listl{;,) directly before passing the state-

Lemma 10 A FindK ey operation which fails K (k) =
1), takes effect atomically at one statement.

roof: For aFindV alue operation which fails ¥V (v) =
1), all checks for value equality in line V24 fails. Because
of the uniqueness of values, there can be at most one pair

read point must have beéh,v) ¢ L,,. Consequently, the (k1,v1) present in the dictionary at one certain moment of

linearizability point will be either of the state-read points. iMme wherev = v,. Given by Lemma 6 we know that the
O algorithm will pass by the node with key, if (ki, ) €

L., atthe time of traversal, and that all keys in the possible
range of keys will be passed by as we start traversing from
the lowest key and that the Skiplist is ordered.

If during the executionkeyl < k; < key2, then if the
Proof: The decision point for aDeleteKey operation check in line V13 succeeds, the state-read point is the read
which succeedsIPK (k) = wv) is when the CAS sub- sub-operation in line V9, otherwise if the check in line V13
operation in line D8 (see Figure 7) succeeds. The state offails, the state-read point is the hidden read sub-operation

Lemma 11l A DeleteKey operation which succeeds
(DK (k) = v), takes effect atomically at one statement.



of the next pointer of nodeodel inthe READ_NODE
function in line N2 or N5 (from V15). The state of the list

(L.,) directly before passing the state-read point must have OP1 = Opz, Op2 = Opz = Opi1 = Ops

been(k,,v1) & L, . Consequently, the linearizability point
will be the state-read point.

If during the executionkey2 = k; and thevalue field
of nodenode2 was not equal ta in line V24, then the
state-read point will be the read sub-operation ofttkie
field in line V24. The state of the listZ¢,) directly before
passing the state-read point must have biégnv,) & L, .
Consequently, the linearizability point will be the state-read
point.

As all operations on shared memory as read, write and

atomic primitives, are atomic, they can be totally ordered.
If during the executionkey2 = k; and thevalue field

of nodenode2 was marked in line V24, the linearizability
point will be the concurrent successful CAS sub-operation
on the samealue field in line D8 that can be ordered be-

Op1 =d Opg — Op1 = Opg (13)

(14)

Lemma 17 The operations that are directly totally ordered
using formula 11, form an equivalent valid sequential exe-
cution.

Proof: If the operations are assigned their direct total order
(Op1 =4 Ops) by formula 11 then also the linearizability
point of Op; is executed before the respective pointgf,.

In this case the operations semantics behave the same as
in the sequential case, and therefore all possible executions
will then be equivalent to one of the possible sequential ex-
ecutions. |

Lemma 18 The operations that are directly totally ordered
using formula 12 can be ordered unique and consistent, and

fore the read sub-operation in line V24, and after the readform an equivalent valid sequential execution.

sub-operation of théead node in line V2. If no such con-
current CAS sub-operation exists, the linearizability point
will be the read sub-operation of thead node in line V24.
The state of the listl(;, ) directly after passing the lineariz-
ability point must have beefk;,v1) & Ly, . O

Lemma 15 A DeleteValue operation which succeeds
(DV (v) = k), takes effect atomically at one statement.

Proof: The decision point for a&eleteV alue operation
which succeeds IV (v) k) is when the CAS sub-
operation in line D8 (from V26) succeeds. The state of
the list (L,) directly before passing of the decision point
must have beetk,v) € L;, otherwise the CAS would have
failed. The state of the list directly after passing the decision
point will be (k,v) ¢ L. Consequently, the linearizability
point will be the CAS sub-operation in line D8. O

Lemma 16 A DeleteValue operation which fails
(DV (v) = 1), takes effect atomically at one statement.

Proof: The proof is the same as fafindValue, see
Lemma 14. O

Definition 7 We define the relations- as the total order
and the relation=, as the direct total order between all
operations in the concurrent execution. In the following
formulas,F; = E5 means that if£; holds thenE, holds
as well, and® stands for exclusive or (i.ea & b means
(a Vb) A—=(aADb)):

Opi1 —a Op2, AOp3.0p; =4 Ops,
AOp4.0Opy =4 Op2 = Op; =4 Op2 (11)

Op1 || Opz = Op; =>4 Op2 ¢ Op2 =4 Op1 (12)

Proof: Assume we order the overlapping operations ac-
cording to their linearizability points. As the state before as
well as after the linearizability points is identical to the cor-
responding state defined in the semantics of the respective
sequential operations in formulas 1 to 10, we can view the
operations as occurring at the linearizability point. As the
linearizability points consist of atomic operations and are
therefore ordered in time, no linearizability point can oc-
cur at the very same time as any other linearizability point,
therefore giving a unique and consistent ordering of the
overlapping operations. ]

Lemma 19 With respect to the retries caused by synchro-
nization, one operation will always do progress regardless
of the actions by the other concurrent operations.

Proof: We now examine the possible execution paths of our
implementation. There are several potentially unbounded
loops that can delay the termination of the operations. We
call these loops retry-loops. If we omit the conditions
that are because of the operations semantics (i.e. search-
ing for the correct position etc.), the loop retries when
sub-operations detect that a shared variable has changed
value. This is detected either by a subsequent read sub-
operation or a failed CAS. These shared variables are only
changed concurrently by other CAS sub-operations. Ac-
cording to the definition of CAS, for any number of concur-
rent CAS sub-operations, exactly one will succeed. This
means that for any subsequent retry, there must be one
CAS that succeeded. As this succeeding CAS will cause its
retry loop to exit, and our implementation does not contain
any cyclic dependencies between retry-loops that exit with
CAS, this means that the correspondingert, FindK ey,
DeleteKey, FindValue or DeleteV alue operation will



progress. Consequently, independent of any number of conthe same experiment with a lock-based implementation of
current operations, one operation will always progress. Skiplists using a single global lock.

The Skiplist-based implementations have a fixed level of
10, which corresponds to an expected optimal performance
with an average of 1024 nodes. All lock-based implementa-
tions are based on simple spin-locks using the TAS atomic
primitive. A clean-cache operation was performed just be-

Proof: Following from Lemmas 7, 8, 9, 10, 11, 12, 13, ‘ h sub . : diff imol ;
14, 15, 16, 17 and 18 and using the direct total order we ore each su -e_xperlment using a di erent 'mp eme_ntatlon.
Il implementations are written in C and compiled with the

can create an identical (with the same semantics) sequentiiﬁh\_ L . -
execution that preserves the partial order of the operation .|ghest gpt|m|zat|qn Ie\_/el, except from the atomic primi-
in a concurrent execution. Following from Definition 3, the tives, which are written in assembler. . .
implementation is therefore linearizable. As the semantics The experiments were performed using d|ffe_rent num-
of the operations are basically the same as in the Skiplist [9],ber O_f threa(_js, varying from 1 to 30. To get a _h|ghly pre-
we could use the corresponding proof of termination. This emptive environment, we performed our experiments on a
together with Lemma 19 and that the state is only changedc,omp""q dual-processor 450 MHz Pentium Il PC running

at one atomic statement (Lemmas 1,7,8,11,15), gives tha inux. In order to evaluate our algorithm with full con-
our implementation is lock-free currency we also used a SGI Origin 2000 system running

Irix 6.5 with 64 195 MHz MIPS R10000 processors. The

results from these experiments are shown in Figures 9 and
5 Experiments 10 . The average execution time is drawn as a function of
the number of threads. Observe that the scale is different

We have performed experiments on both the limited set 2" _egch f|gure n order to clearify the experlments on the
. . . ) individual implementations as much as possible. For the
of operations on a dictionary (i.e. thewsert, FindKey

; SGI system and the limited set of operations, our lock-free
andDelete K ey operations), as well as on the full set of op- . e . )
X . ; ; . ) algorithm shows a negative time complexity with respect
erations on a dictionary (i.e. also including théndV alue . .
A to the size, though for the full set of operations the perfor-
andDeleteV alue operations).

. . . . mance conforms to be averagely the same independently of
In our experiments with the limited set of operations on 9ely P y

a dictionary, each concurrent thread performed 20000 Se_the size. Our conjecture for this behavior is that the perfor-
guential operations, whereof the first 50 up to 10000 of mance of the ccNUMA memory model of the SGI system

the totall ¢ d i aF ; i d increases significantly when the algorithm works on disjoint
the otally periorme t_opera lons deserl o;?]era |ons_J,d;':1n di parts of the memory (as will occur with large sizes of the
trigur;}g?]al(;lnl%SO?zz;?r:)Sp\évrﬁigig \(I)Q:S};(S: f/?;:;v}{e; IS'dictionary), while the time spent by the search phase of the
and 1/3 DeleteKey operations. For the systems which operation will vary insignificantly because of the expected

also involves preemption, a synchronization barrier was er_logarithmic time complexity. On the other hand, for the
P pton, a sy PEll set of operations, there will be corresponding perfor-

{r?rmed ::)et;[w:en_lt_rr]]e 'E |t|a1/|n|sertlo;1 tﬁhaiﬁs arrt1d dtk:]e (;emi\'ln'mance degradation because of the linear time complexity
g(;)pela ?1 s bet eyeha u(ﬁO%OOO% s€ eh 00€S Wa%or the value oriented operations. However, for the algo-
rahdomly chosen betweenan * 1, WRETE IS 1ihm by Michael [6] the benefit for having disjoint access

:ifﬁer;uzrk])gra(r)]f ;cfrzdz essggtigﬁpt?;rgigrt ;V:csh rgge::ﬁgei 0 the memory is insignificant compared to the performance
' 9 P tdegradation caused by the linear time complexity.

was estimated. Exactly the same sequential operations were Our lock-free implementation scales best compared to

p_erformed_ for all d|ffer¢nt implementations compared. Be- the other implementation, having best performance for real-
sides our implementation, we also performed the same ex-

. . . . ) istic sizes and any number of threads, i.e. for sizes larger or
periment with the lock-free implementation by Michael [6] equal than 500 nodes. independently if the svstem is full
which is the most recently claimed to be one of the most g ' b y y y

- o . . concurrent or involves a high degree of pre-emptions. On
efficient concurrent dictionaries existing. . . i X

0 . ts with the full set of i di scenarios with the full set of operations our algorithm per-
_Durexpenments with the Iull Set of operations on a dic- ¢, ,¢ petter than the simple lock-based Skiplist for more
tionary, was performed similarly to the experiments with

L . _~" than 3 threads on any system.
the limited set of operations, except that the remaining
operations after the insertion phase was randomly chosen i
with a distribution of 1/3Insert operations versus 15/48 6 Conclusions
FindKey, 15/48 Delete K ey, 1/48 FindV alue and 1/48
DeleteValue operations. Each experiment was repeated We have presented a lock-free algorithmic implemen-
10 times. Besides our implementation, we also performedtation of a concurrent dictionary. The implementation is

Theorem 1 The algorithm implements a lock-free and lin-
earizable dictionary.
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based on the sequential Skiplist data structure and builds on [6] M. M. Michael, “High performance dynamic lock-free

top of it to support concurrency and lock-freedom in an effi-
cient and practical way. Compared to the previous attempts
to use Skiplists for building concurrent dictionaries our al-
gorithm is lock-free and avoids the performance penalties
that come with the use of locks. Compared to the previ-
ous non-blocking concurrent dictionary algorithms, our al-
gorithm inherits and carefully retains the basic design char-
acteristic that makes Skiplists practical: logarithmic search
time complexity. Previous non-blocking algorithms did not
perform well on dictionaries with realistic sizes because of
their linear or worse search time complexity. Our algorithm
also implements the full set of operations that is needed in
a practical setting.

An interesting future work would be to investigate if it
is suitable and how to change the Skiplist level reactively
to the current average number of nodes. Another issue is
how to choose and change the lengths of the fast jumps in
order to get maximum performance of thndValueand
DeleteValueoperations.

We compared our algorithm with the most efficient non-
blocking implementation of dictionaries known. Experi-
ments show that our implementation scales well, and for

[7]

[8]

[9]

[10]

realistic number of nodes our implementation outperforms [11]

the other implementation, for all cases on both fully concur-
rent systems as well as with pre-emption.

We believe that our implementation is of highly practical
interest for multi-threaded applications.
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