
Technical Report no. 2003-02

Simple Wait-Free Snapshots for Real-Time Systems
with Sporadic Tasks1

Håkan Sundell Philippas Tsigas

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2003

1This work is partially funded by: i) the national Swedish Real-Time Systems research initiative ARTES (www.artes.uu.se) supported
by the Swedish Foundation for Strategic Research and ii) the Swedish Research Council for Engineering Sciences.



Technical Report in Computing Science at
Chalmers University of Technology and Göteborg University

Technical Report no. 2003-02
ISSN: 1650-3023

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden, 2003



Abstract

A wait-free algorithm for implementing a snapshot
mechanism for real-time systems is presented in this paper.
Snapshot mechanisms give the means to a real-time task to
read a globally consistent set of variable values while other
concurrent tasks are updating them. Such a mechanism can
be used to solve a variety of communication and synchro-
nisation problems, including system monitoring and con-
trol of real-time applications. Typically, implementations
of such mechanisms are based on interlocking. Interlock-
ing protects the consistency of the shared data by allowing
only one process at a time to access the data. In a real-time
environment locking typically leads to difficulties in guaran-
teeing deadlines of high priority tasks because of the block-
ing. Researchers have introduced non-blocking algorithms
and data structures that address the above problems. In
this paper we present a simple and efficient wait-free (non-
blocking) snapshot algorithm by making use of timing infor-
mation that is available and necessary to the scheduler that
schedules the tasks of real-time systems. Experiments on a
SUN Enterprise 10000 multiprocessor system show that the
algorithm that we propose here, because of its simplicity,
outperforms considerably the respective wait-free snapshot
algorithm that is not using the timing information.

1 Introduction

In any multiprocessing system co-operating processes
share data via shared data structures. To ensure consis-
tency of the shared data structures programs typically rely
on some form of software synchronisation. In this paper we
are interested in designing a shared data structure for co-
operative tasks in real-time multiprocessor systems allow-
ing processes to read a globally consistent set of variable
values while other concurrent tasks are updating them.

The challenges that have to be faced in the design of
inter-task communication protocols for multiprocess sys-
tems become more delicate when these systems have to sup-
port real-time computing. In real-time multiprocess systems
inter-task communication protocols i) have to support shar-
ing of data between different tasks; ii) must meet strict time
constraints, the HRT deadlines; and iii) have to be efficient
in time and in space since they must perform under tight
time and space constraints.

The classical, well-known and most simple solution
when designing shared data structures enforces mutual ex-
clusion. Mutual exclusion protects the consistency of the
shared data by allowing only one process at a time to ac-
cess the data. Mutual exclusion i) causes large performance
degradation especially in multiprocessor systems [SilG94];
ii) leads to complex scheduling analysis since tasks can be

delayed because they were either preempted by other more
urgent tasks, or because they are blocked before a critical
section by another process that can in turn be preempted by
another more urgent task and so on, (this is also called as
the convoy effect) [KopR93]; and iii) leads to priority in-
version in which a high priority task can be blocked for an
unbounded time by a lower priority task [ShaR90]. Several
synchronisation protocols have been introduced to solve the
priority inversion problem for uniprocessor [ShaR90] and
multiprocessor [Raj90] systems. The solution presented in
[ShaR90] solves the problem for the uniprocessor case with
the cost of limiting the schedulability of task sets and also
making the scheduling analysis of real-time systems hard.
The situation is much worse in a multiprocessor real-time
system, where a task may be blocked by another task run-
ning on a different processor [Raj90].

To address the problems that arise from blocking, re-
searchers have proposed non-blocking implementations of
shared data structures. Two basic non-blocking methods
have been proposed in the literature,lock-free and wait-
free. Lock-freeimplementations of shared data structures
guarantee that at any point in time in any possible execu-
tion some operation will complete in a finite number of
steps. In cases with overlapping accesses, some of them
might have to repeat the operation in order to correctly com-
plete it. This implies that there might be cases in which the
timing may cause some process(es) to have to retry a po-
tentially unbounded number of times, leading to an unac-
ceptable worst-case behaviour for hard real-time systems.
However, they usually perform well in practice. Inwait-free
implementations each task is guaranteed tocorrectlycom-
plete any operation in aboundednumber of its own steps,
regardless of overlaps and the execution speed of other pro-
cesses; i.e. while the lock-free approach might allow (un-
der very bad timing) individual processes to starve, wait-
freedom strengthens the lock-free condition to ensure indi-
vidual progress for every task in the system.

Non-blocking implementation of shared data objects is
a new alternative approach for the problem of inter-task
communication. Non-blocking mechanisms allow multiple
tasks to access a shared object at the same time, but with-
out enforcing mutual exclusion to accomplish this. Non-
blocking inter-task communication does not allow one task
to block another task, and gives significant advantages over
lock-based schemes because:

1. it can not cause priority inversion, avoids lock convoys
that make scheduling analysis hard and delays longer.

2. it provides high fault tolerance (processor failures will
never corrupt shared data objects) and eliminates dead-
lock scenarios from two or more tasks both waiting for
locks held by the other.



3. and more significantly it completely eliminates the in-
terference between process scheduling and synchroni-
sation.

Non-blocking protocols on the other hand have to use
more delicate strategies to guarantee data consistency than
the simple enforcement of mutual exclusion between the
different operations on the data object. These new strate-
gies on the other hand, in order to be useful for real-time
systems, should be efficient in time and space in order to
perform under the tight space and time constraints that real-
time systems demand.

In this paper we show how to exploit information that
is part of the special nature of the real-time systems in or-
der to design a simple snapshot algorithm with one scanner
that is efficient in time and space as needed. The algorithm
that we propose here outperforms significantly — due to its
simplicity — the respective one not using this information
[Warp99a, ErmHPT98]. Experiments on a SUN Enterprise
10000 has shown that the new construction gives 400 %
better response time for the update operations for all sce-
narios and with 20 % better response time for all practical
settings. Please notice that we have one scan task at a time
and multiple concurrent update tasks per component in mul-
tiple components.

Previously Chen and Burns in [CheB99a], exploited the
use of the same information for the construction of a non-
blocking shared buffer. Research at the University of North
Carolina [AndJJ98, AndJS97] and [RamMA96] by Ander-
son et al. has shown that wait-free algorithms can be sim-
plified considerably in real-time systems by exploiting the
way that processes are scheduled for execution in such sys-
tems. In [Warp99a, ErmHPT98] it has also been shown that
wait-free methods actually can be very efficient and rela-
tively low demanding in memory consumption. In our ex-
perimental evaluation of the protocol we compare with this
solution.

The rest of this paper is organised as follows. In Sec-
tion 2 we describe the computer systems that we consider
and give a description of the problem. Section 3 presents
our protocol and later we show how to bound the size of
the buffers used in the algorithm. Section 4 shows some
experiments. The paper concludes with Section 5.

2 System and Problem Description

2.1 Real-time Multiprocessor System Configura-
tion

A typical abstraction of a shared memory multiprocessor
real-time system configuration is depicted in Figure 1. Each
node of the system contains a processor together with its lo-
cal memory. All nodes are connected to the shared mem-
ory via an interconnection network. A set of co-operating

Processor 1

Local Memory

Real-Time Interconnection Network

Shared Memory

Processor 2

Local Memory

Processor n

Local Memory

I/O

Figure 1. Shared Memory Multiprocessor Sys-
tem Structure

tasks1 (processes) with timing constraints are running on
the system performing their respective operations. Each
task is sequentially executed on one of the processors, while
each processor can serve (run) many tasks at a time. The
co-operating tasks now, possibly running on different pro-
cesses, use shared data objects built in the shared memory to
co-ordinate and communicate. Every task has a maximum
computing time and has to be completed by a time specified
by a deadline. Tasks synchronise their operations through
read/write operations to shared memory.

2.2 The Model

In this paper we are interested in the snapshot problem or
snapshot object, which involves taking an “instantaneous”
picture of a set of variables, all in one atomic operation. The
snapshot is taken by one task, thescanner, while each of the
snapshot variables may concurrently and independently be
updatedby other processes (calledupdaters). A snapshot
object is also called acomposite register, consisting of a
number ofcomponents(indexed1 throughc), which con-
stitute the entities which can be updated and snap-shot. We
will use the two terms (snapshot object and composite reg-
ister) interchangeably.

The accessing of the shared object is modelled by a his-
tory h. A history h is a finite (or not) sequence of oper-
ation invocation and response events. Any response event
is preceded by the corresponding invocation event. For our
case there are two different operations that can be invoked, a
snapshot operation or an update operation. An operation is
called complete if there is a response event in the same his-
toryh; otherwise, it is said to be pending. A history is called
complete if all its operations are complete. In a global time
model each operationq “occupies” a time interval[sq; fq ]
on one linear time axis(sq < fq); we can think ofsq and
fq as the starting and finishing time instants ofq. During
this time interval the operation is said to bepending. There
exists a precedence relation on operations in history denoted

1throughout the paper the termsprocessandtasksare used interchange-
ably



// Global variables
snapshotindex:integer
value[NR_COMPONENTS][1]: valtype
// Local variables
tempindex,k,index:integer

procedureUpdate(cid:integer, data:valtype)
U1 value[cid][snapshotindex]:=data;

procedureScan(snapshotdata[NR_COMPONENTS]: valtype)
S1 tempindex:=snapshotindex;
S2 snapshotindex:=tempindex+1;
S3 for k:=0 to NR_COMPONENTS-1do
S4 for index:=tempindexto 0 step-1 do
S5 if value[k][index] 6= NIL then
S6 snapshotdata[k]:=value[k][index];
S7 break;

Figure 2. Pseudocode for the Unbounded
Snapshot Algorithm

by <h, which is a strict partial order:q1 <h q2 means that
q1 ends beforeq2 starts; operations incomparable under<h

are calledoverlapping. A complete historyh is linearisable
if the partial order<h on its operations can be extended to
a total order!hthat respects the specification of the object
[Her91].

3 The Protocol

3.1 The unbounded version

We first start with a simple unbounded snapshot proto-
col that first appeared in Kirousis et.al. [KirST91a]. The
protocol uses buffers of infinite length, the architecture of
this protocol is shown in figure 3. The pseudo-code for
the algorithm is presented in figure 2. The architecture of
our unbounded construction is as follows: For each compo-
nentk = 0; : : : ; c� 1, we introduce an unbounded number
of subregistersvalue[k][l], l = 0; : : : ;1 which are writ-
ten to by the updater of the corresponding component and
are read by the scan function. We call these subregisters
memory locations. The second index of each memory lo-
cationvalue[k][l] is its address (the first indicates the cor-
responding component). A memory location holds a value
that belongs either to the set of values of the corresponding
component or is a special new value denoted byNIL . The
type of all these values is denoted byvaltype. We call them
component values. Initially, the subregistersvalue[k][l]
for k = 0; : : : ; c� 1 andl = 1; : : : ;1 hold the valueNIL ,
while the subregistersvalue[k][0], k = 0; : : : ; c � 1 hold

a value from the set of values of the corresponding compo-
nent. Moreover, we introduce a subregistersnapshotindex

which holds as value an integer (a pointer to a memory loca-
tion). This subregister can be written to by the scanner and
can be read by all updaters. It is initialised with the value 0.

In the protocol the scanner is the controller: it is the one
who determines where the updaters must write. All that an
updater has to do is to write its value to the memory location
forwarded by the scanner through a pointer. More specifi-
cally, the protocol works as follows: An updater first reads
snapshotindex and then writes its value to the memory lo-
cation of the corresponding component that is pointed to
by snapshotindex. The scanner, on the other hand, first
incrementssnapshotindex by one; stores its new value
into a local variabletempindex and then for each com-
ponentk = 0; : : : ; c � 1 gets the value to be returned by
readingvalue[k][tempindex� 1]; : : : ; value[k][0] in this
order until it gets a value which is notNIL . The scanner, by
forwarding to the updater, with its very first sub-operation,
a new subregister, which it does not use again during the
current snapshot, it succeeds to avoid reading values writ-
ten by update operations that started after its own starting
point. Moreover, the scanner, by scanning the subregisters
in the reverse order from the one that they were forwarded in
previous operations and by returning the first “non-empty”
value, it achieves to return non overwritten values.

The snapshot protocol presented here is based on the
following idea: if each scan returns for each component a
value which is not overwritten (cf. figure 4(a)) and which
is written by an update which started before the start of the
scan (cf. figure 4(b,c)), then the solution satisfies an atom-
icity criterion [And93, And94, KirST91a] that enables us
to argue for each component separately and hence leads to
a more modular proof. For the following paragraphs and
the intuitive understanding of the solution, the reader should
keep in mind that the intuitive presentation of the criterion
is summarised in figure 4.

3.2 Bounding the Construction

The systems that we are a looking at are real-time unipro-
cessor or multiprocessor systems. In these systems tasks
come to the respective scheduler with a number of param-
eters that allow these schedulers to decide whether these
tasks are schedulable.

We assume that we haven tasks in the system, indexed
t1:::tn. The tasks can be either periodic or sporadic. For
each taskti we will use the standard notationsTi, Ci, Ri

andDi to denote the period (i.e.min period for sporadic
tasks), worst case execution time, worst case response time
and deadline, respectively. The deadline of a task is less or
equal to its period.

For a system to be safe, no task should miss its deadlines,



t

?

nil

nil nil

nil nil

nil nil

nil

nil

w

w

w

?

?

?

?

?

?

?

?

w = writer position

? = previous values / nil

snapshotindex

c1

ci

cc

v11

vk1

vc1

value[k][0]

Figure 3. Unbounded Snapshot Protocol

t

writewrite

write

write write
t

write write
t

t

write
t

write

write

read

read

read

write

= returned by scan operation

read

a)

b)

d)

e)

c)

ci

ci

ci

ci

ci

cj

Figure 4. Intuitive presentation of the atomicity/linearisability criterion satisfied by our wait-free
solution



S

Wx

Wy

Figure 5. A cyclic buffer with several updater
tasks and one snapshot task

i.e.8i j Ri � Di.
For a system scheduled with fixed priority, the re-

sponse time for a task in the initial system can be calcu-
lated using the standard response time analysis techniques
[AudBDTW95]. If we with Bi denote the blocking time
(the time the task can be delayed by lower priority tasks)
and withhp(i) denote the set of tasks with higher priority
than taskti, the response timeRi for taskti can be formu-
lated as:

Ri = Ci +Bi +
X

j2hp(i)

�
Ri

Tj

�
Cj (1)

The summand in the above formula gives the time that
taskti may be delayed by higher priority tasks. For systems
scheduled with dynamic priorities, there are other ways to
calculate the response times [AudBDTW95].

We will useTS to denote the snapshot task period and
TWi

to denote the updater tasks period. To simplify the for-
mulas we assume that tasks can be preempted at arbitrary
points during their execution and that there are no overheads
for context switching or interrupt handling. We also assume
that one of the tasks in the system acts as a scanner task, say
tscan, but in the original system it doesn’t have any mecha-
nism to get a consistent snapshot.

In this subsection, we will show how to transform the
unbounded space protocol of the previous subsection into
one that uses bounded space only.

In the bounded space protocol as well, we are going to
keep the role of the scanner as the controller of the game.
It still is the one who determines the subregister where the
updater is going to write. However, because the number of
the subregisters must be bounded, instead of forwarding a
new subregister each time, the scanner has to find an obso-
lete subregister which will be forwarded to the updater after
erasing its contents. We call this procedure of erasing the
contents of a subregister and its forwarding to the updater,

snapshotindex % cycle[cid]

t

? w

w

w

nil?

?

?

?
?

?
nil

nil

nil
nil

? = previous values / nil

w = writer position

c1

ci

cc

Figure 6. Bounded Snapshot Protocol

asrecyclingof the subregister.
We keep the techniques used in the previous algorithm,

that is: (i) The updaters write to the memory location for-
warded by the snapshot operation. (ii) The snapshot oper-
ation, by forwarding with its very first sub-operation a re-
cycled subregister, which it is not going to use again during
the current snapshot, it succeeds to avoid reading compo-
nent values written by update operations which start after its
own starting point. (iii) The scanner in each snapshot oper-
ation reads the remaining memory locations in the reverse
order from the one that they had been previously forwarded.

Thus, the problem of designing a correct algorithm that

tw

tscan

min TS min TS min TS

RS

RW

= increment snapshotindex by +1

Figure 7. Estimating the buffer length - worst
case scenario



// Global variables
snapshotindex:integer
value[NR_COMPONENTS]:pointer to valtype
cycle[NR_COMPONENTS]:integer
// Local variables
index,k,tempindex:integer

procedure Initialize
I1 for index:=0to NR_COMPONENTS-1do
I2 value[index]:=newvaltype[cycle[index]];

procedureUpdate(cid:integer, data:valtype)
U1 tempindex:=snapshotindexmodulo cycle[cid];
U2 value[cid][tempindex]:=data;

procedureScan(snapshotdata[NR_COMPONENTS]:valtype)
S1 tempindex:=snapshotindex+1;

/* clean phase */
S2 for k:=0 to NR_COMPONENTS-1do
S3 value[k][tempindexmodulo cycle[k]] := NIL;
S4 snapshotindex:=tempindex;
S5 tempindex:=tempindex-1;

/* read phase */
S6 for k:=0 to NR_COMPONENTS-1do
S7 index:=tempindexmodulo cycle[k];
S8 while index 6= (tempindex+1)modulo cycle[k] do
S9 if value[k][index] 6= NIL then
S10 snapshotdata[k] := value[k][index];
S11 break;
S12 index:=(index-1)modulo cycle[k];

Figure 8. Pseudo-code for the Bounded Snap-
shot Algorithm

uses a bounded number of subregisters is reduced to the
problem of having the scanner choose each time aprov-
ably obsolete subregister for recycling. By doing this we
can use the timing information that comes together with the
task set in real-time systems. For the beginning please note
that the unbounded construction that was presented in the
previous section has the nice property that the scanner task
is always at least one position ahead of the updaters when
accessing the buffers, see figure 5. This leads us to con-
sider replacing the unbounded buffer with a cyclical buffer
mechanism where the buffer slots are now going to be "for-
warded" cyclically by the scanner. Each circular data buffer
now is implemented by an array ofl entries. Each entry
is capable of holding one copy of the data that an updater
wants to write. The next step then is to analyse the con-
ditions that the cyclical buffers have to satisfy in order to
maintain the safety properties that were described above.
Note that the buffer length can be of different length for
each individual component, and that the buffer length is de-

pendent on the timing characteristics of the updaters that
write to this component, and also dependent on the timing
characteristics of the scanner task which advances the buffer
index. See figure 8 for the algorithm pseudo-code and fig-
ure 6 for an explanation how the algorithm interacts with
the cyclic buffers.

As the updater always has to have a valid buffer slot to
write to, we know that we need a buffer of at least length
one. So to calculate how many more indexes we need for
each buffer we compare the maximum time it takes for an
updater to finish, to the minimum time it takes between
two subsequent increments of the index done by the scan-
ner function. First we assume that the tasks always execute
within their response timesR with arbitrary many interrup-
tions, and that the execution timeC is comparably small.
This means that the increment respective the write to the
buffer slot can occur anytime within the interval for the re-
sponse time. The maximum time for an updater function
to finish is the same as the response timeRW for its task
tW . The minimum time between two index increments is
when the first increment is executed at the end of the first
interval and the next increment is executed at the very be-
ginning of the second interval, i.e.TS �RS. The minimum
time between the subsequent increments will then be the pe-
riod (min for sporadic tasks)TS. The worst case scenario
between an updater and the scanner is when the snapshotin-
dex is incremented directly after the updater has read it, as it
is shown in Figure 7. Regardless of the timing characteris-
tics of the involved tasks, it will always be possible to have
at least one increment, and adding the one always needed
by the updater this adds up to an absolute minimum of two
buffer slots.

If RW � (minTS �RS) then:

l = 2 (2)

If RW > (minTS �RS) then:

l =

�
RW � (min TS �RS)

minTS

�
+ 3 (3)

We are now combining those two expressions into one
single expression. The floor function can safely turned into
a ceiling function by subtracting one from the constant in
equation 3. We also have to consider the longest buffer
length we need considering all the updater tasks that are up-
dating the same component. If we denote the length of the
buffer for componentk with lk, and the group of updaters
to componentk with wr(k), our calculations lead us to the
following formula:

lk =

�
maxi2wr(k)RWi

�minTS +RS

min TS

�
+ 2 (4)



Scenario Scan Period (us) Update Period (us) Buffer Length
1 500 50 3
2 200 50 3
3 100 50 3
4 50 50 4
5 50 100 6
6 50 200 10
7 50 500 22

Figure 9. Descriptions of Scenarios for exper-
iment

The last formula that we have calculated describes the
buffer length that our construction needs in order to guar-
antee the safety property of our circular-buffer. It can be
clearly seen that the buffer lengths keep very low when the
snapshot task period is bigger than the updater task period,
actually very similar buffer lengths as what can be achieved
with more sophisticated snapshot algorithms, like the wait-
free [Warp99a, ErmHPT98] that does not use the timing in-
formation but instead uses more advanced synchronisation
primitives that the tasks can use in order to synchronise.

4 Experiments

A number of experiments have been performed in order
to measure experimentally the performance of the new con-
struction. To give an interesting and appropriate compari-
son we have done experiments with the wait-free snapshot
algorithm [Warp99a, ErmHPT98], and then done the simi-
lar experiments with the bounded-time algorithm presented
in this paper. The experiments have been executed on a Sun
Enterprise 10000 parallel machine with 64 processors. The
system considered is consisting of 1 scan process and 10 up-
dater processes. The tasks have been generated as periodic
tasks, with one task per cpu. The periods of the scan and
update tasks have been changed according to some selected
scenarios, see figure 9. Several long executions of the sce-
narios have been executed and the average response times
for the scan and update operations have been measured. The
wait-free respective the bounded-time algorithms have been
executed with exactly the same environment and param-
eters. The buffer lengths have been computed according
to equation 4 presented in the analysis. To give an inter-
esting and appropriate comparison we have compared the
algorithm presented here with the wait-free snapshot algo-
rithm presented in [Warp99a, ErmHPT98]. Both these al-
gorithms use the same unbounded memory construction,
[Warp99a, ErmHPT98] bounds it efficiently without using
the timing information.

The result of the experiments can be viewed in figures
10 and 11. According to the experiments, the new construc-
tion gives 400 % better response time for the update oper-

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Scenario

Wait-Free Snapshot Response Time Using vs Not Using Timing Information - Scan

SCAN NOT USING TIMING INFORMATION
SCAN USING TIMING INFORMATION

Figure 10. Experiment with 1 Scan and 10 Up-
date processes - Scan task comparison

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Scenario

Wait-Free Snapshot Response Time Using vs Not Using Timing Information - Update

UPDATE NOT USING TIMING INFORMATION
UPDATE USING TIMING INFORMATION

Figure 11. Experiment with 1 Scan and 10 Up-
date processes - Update task comparison

ations for all scenarios and with 20 % better response time
for all scenarios that are common in practical settings com-
pared to [Warp99a, ErmHPT98]. The protocol presented
in [Warp99a, ErmHPT98] can perform better than the al-
gorithm presented here, but only with respect to the scan
operations, and only when the scan period is lower than the
update period. The reason for this is that for the construc-
tion presented here, the buffer lengths increase as the period
of a scan operation increases. But as we mentioned above
the new construction gives 400 % better response time for
the update operations for all scenarios. These are very sig-
nificant results as we usually do a lot more update opera-
tions than scan operations. Although the scan operation can
be slower for the bounded-time for some scenarios, we can
assume that we will get a trade-off because of the benefits
with the faster update operations.



5 Conclusions and Future Work

We have looked at the problem of taking a snapshot of
several shared data components in a concurrent system by
using timing information about the system that is available
on real-time systems. By exploiting this information we
design a simple snapshot algorithm with one scanner that is
efficient in time and space. The efficiency of the algorithm
was experimentally evaluated on a SUN Enterprise 10000
multiprocessor.

We believe that our construction with simple modifica-
tions works also for the multi-scanner case.

References

[Warp99a] B. Allvin, A. Ermedahl, H. Hansson, M. Pa-
patriantafilou, H. Sundell, Ph. Tsigas. Eval-
uating the Performance of Wait-Free Snap-
shots in Real-Time Systems. InSNART’99
Real Time Systems Conference, pages 196–
207, Aug 1999.

[And93] J. Anderson. Composite registers. InDis-
tributed Computing, 6, pages 141–154, 1993.

[AndJJ98] J. Anderson, R. Jain, and K. Jeffay. Effi-
cient object sharing in quantum-based real-
time systems. InProceedings of the 19th
IEEE Real-Time Systems Symposium, pages
346–355. Dec. 1998.

[And94] J. Anderson. Multi-writer composite reg-
isters. InDistributed Computing, 7, pages
175–195, 1994.

[AndJS97] J. Anderson, R. Jain, and S. Ramamurthy.
Wait-free object-sharing schemes for real-
time uniprocessors and multiprocessors. In
Proceedings of the 18th IEEE Real-Time Sys-
tems Symposium, pages 111–122. Dec. 1997.

[AudBDTW95] N.C. Audsley, A. Burns, R.I. Davis, K.W.
Tindell and A.J. Wellings. Fixed Priority Pre-
emptive Scheduling: An Historical Perspec-
tive In Real-Time Systems Vol. 8, Num. 2/3,
pages 129–154, 1995.

[CheB99a] J. Chen, A. Burns. Loop-Free Asynchronous
Data Sharing in Multiprocessor Real-Time
Systems Based on Timing Properties. InPro-
ceedings of the 6th International Conference
on Real-Time Computing Systems and Appli-
cations (RTCSA 99), Nov 1999.

[ErmHPT98] A. Ermedahl, H. Hansson, M. Papatri-
antafilou, Ph. Tsigas. Wait-free Snapshots
in Real-time Systems: Algorithms and their
Performance. InProceedings of the 5th Inter-
national Conference on Real-Time Comput-
ing Systems and Applications (RTCSA ’98),
pages 257–266, 1998.

[Her91] M. Herlihy. Wait-Free Synchronization. In
ACM TOPLAS, Vol. 11, No. 1, pages 124–
149, Jan. 1991.

[KirST91a] L.M. Kirousis, P. Spirakis and Ph. Tsigas.
Reading Many Variables in One Atomic Op-
eration: Solutions with Linear or Sublinear
Complexity. InIEEE Transactions on Paral-
lel and Distributed Systems, 5(7), pages 688–
696, July 1994.

[KopR93] H. Kopetz and J. Reisinger. The Non-
Blocking Write Protocol NBW: A Solution
to a Real-Time Synchronization Problem. In
Proc. of the 14th Real-Time Systems Symp.,
pages 131–137, 1993.

[Raj90] R. Rajkumar. Real-Time Synchronization
Protocols for Shared Memory Multiproces-
sors. In10th International Conference on
Distributed Computing Systems, pages 116–
123, 1990.

[RamMA96] S. Ramamurthy, M. Moir, and J. Ander-
son. Real-time object sharing with mini-
mal support. InProceedings of the 15th
Annual ACM Symposium on Principles of
Distributed Computing, pages 233–242. May
1996.

[ShaR90] L. Sha and R. Rajkumar, J. P. Lehoczky. Pri-
ority Inheritance Protocols: An Approach to
Real-Time Synchronization. InIEEE Trans-
actions on Computers, Vol. 39, 9, pages
1175–1185, Sep. 1990.

[SilG94] A. Silberschatz, Peter B. Galvin. Operating
System Concepts. Addison Wesley, 1994.


