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Abstract are then guaranteed to finish in a limited number of their
own steps. Recently, researchers also include obstruction-
We present an efficient and practical lock-free imple- free [9] implementations to be non-blocking, although this
mentation of a concurrent deque that is disjoint-parallel kind of implementation is weaker than lock-free and thus
accessible and uses atomic primitives which are available does not guarantee progress of any concurrent operation.
in modern computer systems. Previously known lock-free  The implementation of a lock-based concurrent deque is
algorithms of deques are either based on non-available a trivial task, and can preferably be constructed using either
atomic synchronization primitives, only implement a sub- a doubly linked list or a cyclic array, protected with either
set of the functionality, or are not designed for disjoint ac- a single lock or with multiple locks where each lock pro-
cesses. Our algorithm is based on a doubly linked list, and tects a part of the shared data structure. To the best of our
only requires single-word compare-and-swap atomic prim- knowledge, there exists no implementations of wait-free de-
itives, even for dynamic memory sizes. We have performedjues, but several lock-free implementations have been pro-
an empirical study using full implementations of the most posed. However, all previously lock-free deques lack in
efficient algorithms of lock-free deques known. For systemsseveral important aspects, as they either only implement a
with low concurrency, the algorithm by Michael shows the subset of the operations that are normally associated with
best performance. However, as our algorithm is designed a deque and have concurrency restrictldile Arora et al
for disjoint accesses, it performs significantly better on sys- [2], or are based on atomic hardware primitives like Double-
tems with high concurrency and non-uniform memory ar- Word Compare-And-Swap (CAS2vhich is not available
chitecture. in modern computer systems. Greenwald [5] presented
a CAS2-based deque implementation, and there is also a
publication series of a CAS2-based deque implementation
1 Introduction [1],[4] with the latest version by Martin et al [12]. Indepen-
dently of our work, Michael [13] has developed a deque im-
é)lementation based on Compare-And-Swap (CABpw-
ever, it is not disjoint-parallel accessible as all operations

structure. For example, deques are often used for imple- . .
. . . have to synchronize, even though they operate on different

menting the ready queue used for scheduling of tasks in . .
. . ends of the deque. Secondly, in order to use dynamic max-
operating systems. A deque supports four operations, the

. . imum deque sizes it requires an extended CAS-operation
PusthghtthePopR|gh1 thg?ushLefx and thePopLeftop- that can atomically operate on two adjacent words, which is
eration. The abstract definition of a deque is a list of values,

where thePushRight/PushLefiperation adds a new value not availablé on all modern platforms.

to the right/ef ecige of the lis. THeopRightPopLefoper- 1" I® paRer we presenta lockcfioe algorit of a con
ation correspondingly removes and returns the value on the q . Joint-p
. . sense that operations on different ends of the deque do not
right/left edge of the list.

To ensure consistency of a shared data object in a Con_.necessarlly interfere with each other) and implemented us-

. : ing common synchronization primitives that are available in
current environment, the most common method is mutual .
C : . modern systems. It can be extended to use dynamic max-
exclusion, i.e. some form of locking. Mutual exclusion de- . . . )
) : imum deque sizes (in the presence of a lock-free dynamic
grades the system’s overall performance [15] as it causes

blocking, i.e. other concurrent operations can not make anymemory handler), still using normal CAS-operations. The

progress while the access to the shared resource is blocke8Igorlthm IS desgnbed in detail !ater in this paper, and the
by the lock. Mutual exclusion can also cause deadlocks aspects concerning the underlying lock-free memory man-

priority inversion and even starvation agement are also presented. The precise semantics of the

Researchers have addressed these problems by propog)_peratlons are defined and we give a proof that our imple-

. . : . mentation is lock-free and linearizable [10].

ing non-blocking algorithms for shared data objects. Non- [10]

blOCkmg methods do not involve mutual exclusion, and 1The algorithm by Arora et al does not support push operations on both

therefore do not suffer from the problems that block- ends, and does not allow concurrent invocations of the push operation and

ing could generate. Lock-free implementations are non- apop operation on the opposite end. ‘

blocking and guarantee that regardless of the contention A CAS2 operations can atomically read-and-possibly-update the con-
. . . tents of two non-adjacent memory words. This operation is also sometimes

caqsed by concurrent operations and the mterlegvmg _ofca”ed DCAS in the literature.

their sub-operations, always at least one operation will  3The standard CAS operation can atomically read-and-possibly-update

progress. However, there is a risk for starvation as the the contents of a single memory word ,

progress of some operations could cause some other Oper%-roc'é'ssss:";‘l'rlgﬁilz st’;:zse Intel 1A-32, but not on the Sparc or MIPS micro-

tions to never finish. Wait-free [8] algorithms are lock-free * sthere is a general and formal definition called disjoint-access-parallel

and moreover they avoid starvation as well, as all operationsby Israeli and Rappoport [11]

A deque (i.e. double-ended queue) is a fundamental dat
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function TAS(valuepointer to word):boolean

atomic do
if *value=0then
*value:=1;
return true ;
else return false

procedure FAA(addressointer to word, numberinteger)

Figure 1. Shared Memory Multiprocessor Sys-
tem Structure

atomic do
*address := *address + number;

function CAS(addresgointer to word, oldvalueword,

We have performed experiments that compare the per-
formance of our algorithm with two of the most efficient
algorithms of lock-free deques known; [13] and [12], the
latter implemented using results from [3] and [6]. Exper-
iments were performed on three different multiprocessor
system equipped with either 2,4 or 29 processors. All of
the systems are using different operating systems. Our re-
sults show that the CAS-based algorithms outperforms the
CAS2-based implementatidhfor any number of threads,
and for the system with full concurrency and non-uniform
memory architecture our algorithm performs significantly
better than the algorithm in [13].

The rest of the paper is organized as follows. In Section
2 we describe the type of systems that our implementation
is aimed for. The actual algorithm is described in Section
3. In Section 4 we define the precise semantics for the op-
erations on our implementation, and show their correctness
by proving the lock-free and linearizability properties. The
experimental evaluation is presented in Section 5. We con-
clude the paper with Section 6.

2 System Description

newvalueword):boolean

atomic do
if *address = oldvaluéhen
*address := newvalue;
return true ;
else return false

Figure 2. The Test-And-Set (TAS), Fetch-And-
Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

Inserted node

Figure 3. Concurrent insert and delete opera-
tion can delete both nodes.

uniformly accessible for all nodes in the system; proces-

sors can have different access times on different parts of the

A typical abstraction of a shared memory multi-
processor system configuration is depicted in Figure 1.

memory.

Each node of the system contains a processor together witt8 ~ Algorithm

its local memory. All nodes are connected to the shared
memory via an interconnection network. A set of co-

The algorithm is based on a doubly-linked list data struc-

operating tasks is running on the system performing their y,re  To use the data structure as a deque, every node con-

respective operations. Each task is sequentially executedaing a value. The fields of each node item are described in
on one of the processors, while each processor can servgigyre 4 as it is used in this implementation.

(run) many tasks at a time. The co-operating tasks, possi-

In order to make the deque construction concurrent and

bly running on different processors, use shared data objectg,on.plocking, we are using three of the standard atomic
built in the shared memory to co-ordinate and communi- synchronization primitives, Test-And-Set (TAS), Fetch-
cate. Tasks synchronize their operations on the shared datanq-Add (FAA) and Compare-And-Swap (CAS). Figure

objects through sub-operations on top of a cache-coherenb gescribes the specification of these primitives which are
shared memory. The shared memory may not though begailable in most modern platforms.

6The CAS2 operation was implemented in software, using either mu-

To insert or delete a node from the list we have to change

tual exclusion or the results from [6], which presented an softwarerCAS the respective set of prev and next pointers. These have to

(CAS for n non-adjacent words) implementation.

be changed consistently, but not necessarily all at once. Our



solution is to treat the doubly-linked list as being a singly- management scheme invented by Valois [17] and corrected

linked list with auxiliary information in the prev pointers, by Michael and Scott [14], which makes use of the FAA and

with the next pointers being updated before the prev point- CAS atomic synchronization primitives. Using this scheme

ers. Thus, the next pointers always form a consistent singly-we can assure that a node can only be reclaimed when there

linked list, but the prev pointers only give hints for where to is no prev or next pointer in the list that points to it. One

find the previous node. This is possible because of the ob-problem with this scheme is that it can not handle cyclic

servation that a “late” non-updated prev pointer will always garbage (i.e. 2 or more nodes that should be recycled but

point to a node that is directly or some steps previous of reference each other, and therefore each node keeps a pos-

the current node, and from that “hint” position it is always itive reference count, although they are not referenced by

possible to traverdethrough the next pointers to reach the the main structure). Our solution is to make sure to break

directly previous node. potential cyclic references directly before a node is possibly
One problem, that is general for non-blocking imple- recycled.

mentations that are based on the singly-linked list structure, Another memory management issue is how to de-

arises when inserting a new node into the list. Because ofreference pointers safely. If we simply de-reference the

the linked-list structure one has to make sure that the previ-pointer, it might be that the corresponding node has been

ous node is not about to be deleted. If we are changing thereclaimed before we could access it. It can also be that the

next pointer of this previous node atomically with CAS, to deletion mark that is connected to the prev or next pointer

point to the new node, and then immediately afterwards thewas set, thus marking that the node is deleted. The follow-

previous node is deleted - then the new node will be deleteding functions are defined for safe handling of the memory

as well, as illustrated in Figure 3. There are several solu-management:

tions to this problem. One solution is to use the CAS2 oper-

ation as it can change two pointers atomically, but this oper-  function MALLOC_NODE() :pointer to Node

ation is not available in any modern multiprocessor system.  function READ_PREV(addrespointer to Link) :pointer to

A second solution is to insert auxiliary nodes [17] between Node

every two normal nodes, and the latest method introduced function READ_NEXT(addresgointer to Link) :pointer to

by Harris [7] is to use a deletion mark. This deletion mark Node _ _

is updated atomically together with the next pointer. Any _po‘;‘ri?ecr“t‘;nNOSeEAD—PREV—DEL(addreSpo'mer to  Link)

congurrent msert.operatlon will then be notlfleq aboyt the function READ_NEXT_DEL(addrespointer to Link)

possibly set deletion mark, when its CAS operation will fail pointer to Node

on updating the next pointer of the to-be-previous node. For

. ’ X . function COPY_NODE(nodquointer to Node) pointer to
our doubly-linked list we need to be informed also whenin- ygge

serting using the prev pointer. In order to be able to atomi-  procedure RELEASE_NODE(nodgointer to Node)

cally update both the prev and the next pointer together with

the deletion mark, all of these have to be put togetherinone The function MALLOC NODE allocates a new node
memory word. For a 32-bit word this means a maximum from the memory pool of pre-allocated nodes. The function
of 32 768 (or 2 147 483 648 for a 64-bit word) possibly RE| EASE_NODEecrements the reference counter on the
addressable nodes using the prev or next pointers. How-corresponding given node. If the reference count reaches
ever, as will be shown later in Section 3.4, the algorithm zerq, the function then calls tiReleaseReferencamction

can easily be extended to handle dynamic maximum sizesghat will recursively callRELEASE_NODEnN the nodes

thus making this limit obsolete. that this node has owned pointers to, and then it reclaims the
node. The functiofCOPY_NODEncreases the reference
3.1 Memory Management counter for the corresponding given nodeREAD_PREY

READ_PREV_DEIREAD_NEXTandREAD_NEXT_DEL

As we are concurrently (with possible preemptions) atomically de-references the given link in the corresponding
traversing nodes that will be continuously allocated and re- direction and increases the reference counter for the cor-
claimed, we have to consider several aspects of memoryresponding node. In case the deletion mark of the link is
management. No node should be reclaimed and then lateget, the functiondlREAD_PREVand READ_NEXTreturn
re-allocated while some other process is (or will be) travers- NULL.
ing that node. This can be solved for example by careful
reference counting. We have selected the lock-free memory3.2 Pushing and Popping Nodes

7As will be shown later, we have defined the deque data structure in a . . . .
way that makes it possible to traverse even through deleted nodes, as long The PUShLeft()perat'_()na see Figure 4, first repeatingly
as they are referenced in some way. tries in lines L4-L15 to insert the new nodeode between



union Link procedure PushCommon(nodguointer to Node, next:pointer to Node)

_:word P1  while true do
(prev, next, d): (pointer to Node,pointer to Node,boolear) P2 link1:=next.link;
P3 link2:=(node,link1.nexfalse);
structure Node P4 if link1.d = true or node.link.d= true
value: pointer to word P5 or node.link.next£ nextthen
link: union Link P6 break;
P7 if CAS(&next.link,link1,link2)then
// Global variables P8 COPY_NODE(node);
head, tail:pointer to Node P9 RELEASE_NODE(link1.prev);
/Il Local variables P10 if node.link.d =true then
node, prev, prev2, next, nextgointer to Node P11 prev2:=COPY_NODE(node);
link1, link2, lastlink: union Link P12 prev2:=HelpInsert(prev2,next);
P13 RELEASE_NODE((prev2);
function CreateNode(valupointer to word ):pointer to Node P14 break;
Cl node:=MALLOC_NODE(); P15 Back-Off
C2 node.value:=value; P16 RELEASE_NODE(next);
C3 return node; P17 RELEASE_NODE(node);
procedure ReleaseReferences(nopeinter to Node) function PopLeft(): pointer to word
RR1 RELEASE_NODE(node.link.prev); PL1 prev:=COPY_NODE(head);
RR2 RELEASE_NODE(node.link.next); PL2 while true do
PL3 node:=READ_NEXT(&prev.link);
procedure PushLeft(valuepointer to word) PL4 if node= tail then
L1  node:=CreateNode(value); PL5 RELEASE_NODE(node);
L2  prev:=COPY_NODE(head); PL6 RELEASE_NODE(prev);
L3  next:=READ_NEXT(&prev.link); PL7 return L;
L4  while true do PL8 link1l:=node.link;
L5 link1:=prev.link; PL9 if link1l.d = true then
L6 if linkl.next# nextthen PL10 DeleteNext(node);
L7 RELEASE_NODE(next); PL11 RELEASE_NODE(node);
L8 next:=READ_NEXT(&prev.link); PL12 continue;
L9 continue; PL13  next:=COPY_NODE(link1.next);
L10 node.link:Xprev,link1.nexfalse); PL14  link2:=(link1.prev,link1.nextrue)
L11 link2:=(link1.prev,noddalse); PL15 if CAS(&node.link,link1,link2)then
L12 if CAS(&prev.link,link1,link2)then PL16 DeleteNext(node);
L13 COPY_NODE(node); PL17 prev:=Helpinsert(prev,next);
L14 break; PL18 RELEASE_NODE(prev);
L15 Back-Off PL19 RELEASE_NODE(next);
L16 PushCommon(node,next); PL20 value:=node.value;
PL21 break;
procedure PushRight(valuepointer to word) PL22 RELEASE_NODE(node);
R1 node:=CreateNode(value); PL23 RELEASE_NODE(next);
R2  next:=COPY_NODE(tail); PL24  Back-Off
R3  prev:i=READ_PREV(&next.link); PL25 RemoveCrossReference(node);
R4  while true do PL26 RELEASE_NODE(node);
R5 link1l:=prev.link; PL27 return value;
R6 if linkl.next# nextor previink.d= true then
R7 prev:=Helplnsert(prev,next); function PopRight():pointer to word
R8 continue; PR1 next:=COPY_NODE(tail);
R9 node.link:%prev,link1.nexfalse); PR2 while true do
R10 link2:=<(link1.prev,noddalse); PR3 node:=READ_PREV/(&next.link);
R11 if CAS(&prev.link,link1,link2)then PR4 linkl:=node.link;
R12 COPY_NODE(node); PR5 if link1.next# nextor link1.d =true then
R13 break; PR6 node:=HelpInsert(node,next);
R14 Back-Off PR7 RELEASE_NODE(node);
R15 PushCommon(node,next); PRS8 continue;

Figure 4. The algorithm, part 1(2).



PR9

PR10
PR11
PR12
PR13
PR14
PR15
PR16
PR17
PR18
PR19
PR20
PR21
PR22
PR23
PR24
PR25
PR26
PR27

if node= headthen
RELEASE_NODE(next);
RELEASE_NODE(node);
return L;
prev:=COPY_NODE(link1.prev);
link2:<link1.prev,link1.nextrue)
if CAS(&node.link,link1,link2)then
DeleteNext(node);
prev:=Helplnsert(prev,next);
RELEASE_NODE(prev);
RELEASE_NODE(next);
value:=node.value;
break;
RELEASE_NODE(prev);
RELEASE_NODE(node);
Back-Off
RemoveCrossReference(node);
RELEASE_NODE(node);
return value;

procedure DeleteNext(nodepointer to Node)

DN1

DN2

DN3

DN4

DN5

DNG6

DN7

DN8

DN9

DN10
DN11
DN12
DN13
DN14
DN15
DN16
DN17
DN18
DN19
DN20
DN21
DN22
DN23
DN24
DN25
DN26
DN27
DN28
DN29
DN30
DN31
DN32

lastlink.d:#rue;
prev:=READ_PREV_DEL(&node.link);
next:=READ_NEXT_DEL(&node.link);
while true do
if prev= nextthen break;
if next.link.d =true then
next2:=READ_NEXT_DEL(&next.link);
RELEASE_NODE(next);
next:=next2;
continue;
prev2:=READ_NEXT(&prev.link);
if prev2= NULL then
if lastlink.d =false then
DeleteNext(prev);
lastlink.d:#rue;
prev2:=READ_PREV_DEL(&prev.link);
RELEASE_NODE(prev);
prev:=prev2,
continue;
link1:=(prev.link.prev,prevalse);
if prev2+£ nodethen
lastlink.d:$alse
RELEASE_NODE(prev);
prev:=prev2,
continue;
RELEASE_NODE(prev2);
link2:=(link1.prev,node.link.nexfalse);
if CAS(&prev.link,link1,link2)then
COPY_NODE(link2.next);
RELEASE_NODE(node);
break;
Back-Off

DN33
DN34

function Helplnsert(prevpointer to Node, nodepointer to Node)

RELEASE_NODE(prev);
RELEASE_NODE(next);

:pointer to Node

HI1
HI2
HI3
Hl4
HI5
HI6
HI7
HI8
HI9
HI10
HI11
HI12
HI13
HI14
HI15
HI16
HI17
HI18
HI19
HI120
HI21
HI22
HI123
HI24
HI25
HI126
HI27
HI28
HI129

lastlink.d:=true;

while true do

prev2:=READ_NEXT (&prev.link);

if prev2= NULL then
if lastlink.d =false then

DeleteNext(prev);
lastlink.d:=true;

prev2:=READ_PREV_DEL(&prev.link);
RELEASE_NODE(prev);
prev:=prev2,
continue;

link1:=node.link;

if link1.d = true then
RELEASE_NODE((prev2);
break;

if prev2+# nodethen
lastlink.d:=false
RELEASE_NODE(prev);
prev:=prev2,
continue;

RELEASE_NODE(prev2);

link2:=(prev,link1.nextialse);

if CAS(&node.link,link1,link2)then
COPY_NODE(prev);
RELEASE_NODE(link1.prev);
if prev.link.d= true then continue;
break;

Back-Off

return prev;

procedure RemoveCrossReference(nogeinter to Node)
RC1 while true do

RC2
RC3
RC4
RC5
RC6
RC7
RC8
RC9
RC10
RC11
RC12
RC13
RC14
RC15

link1:=node.link;

prev:=link1.prev;

if prev.link.d =true then
prev2:=READ_PREV_DEL (&prev.link);
node.link:%prev2,link1.nextrue);
RELEASE_NODE(prev);
continue;

next:=link1.next;

if next.link.d =true then
next2:=READ_NEXT_DEL(&next.link);
node.link:fink1.prev,next2rue);
RELEASE_NODE(next);
continue;

break;

Figure 5. The algorithm, part 2(2).



the head nodepfeV) and the leftmost nodeéx), by atomi- returns. Ifnodewas marked for deletion or the prev pointer
cally changing the next pointer of the head node. Before try- of the nextnode was incorrect, it tries to update the prev
ing to update the link field, it assures in line L6 that text pointer of thenextnode by calling thédelplnsertfunction,
node is still the very next node of head, otherwisgtis up- and thennodeis updated to be the rightmost node. After
dated in L7-L8. After the new node has been successfully the node has been successfully marked it follows the same
inserted, it tries in lines P2-P15 to update the prev pointer scheme as thBopLeftoperation.
of the next node. It retries until either i) it succeeds with
the update, ii) it detects that either the next or new node is3 3 Helping and Back-Off
deleted, or iii) the next node is no longer directly next of the
new node. In any of the two '?“e“ the changes are d_u_e to TheDeleteNexprocedure, see Figure 5, repeatedly tries
concurrent Pop or Push operations, and the responsibility to, . . :
. ; in lines DN4-DN32 to delete (in the sense of a chain of
update the prev pointer is then left to those. If the update . ; .
. . next pointers starting from the head node) the given marked
succeeds, there is though the possibility that the new node . . .
. node fodg by changing the next pointer from the previous
was deleted (and thus the prev pointer of tiextnode was .
X . __.non-marked node. First, we can safely assume that the next
possibly already updated by the concurrent Pop operation)

directly before the CAS in line P7, and then the prev pointer pointer of th? marked node is qlwayg referring to a node
is updated by calling thelelpinsertfunction in line P12. (nex) to the right and the prev pointer is always referring to

) i ) ) a node prev) to the left (not necessarily the first). Before
The PushRightoperation, see Figure 4, first repeatedly ying to update the link field with the CAS operation in

tries in lines R4-R14 to insert the new node(g between  |ine DN28, it assures in line DN5 thabdeis not already
the rightmost nodepfevand the tail noderfex, by atomi-  jejeted, in line DN6 that thaext node is not marked, in
cally changing the next pointer of tipgevnode. Before try-  jine DN12 that theprevnode is not marked, and in DN21
ing to update the link field, it assures in line R6 thattiest thatprevis the previous node afode If nextis marked, it
node is still the very next node qirev, otherwiseprev is is updated to be the next node.plievis marked we might
updated by calling th?lelplnsertfunction inR7-R8, which  haed to delete it before we can updatev to one of its
updates the prev pointer of thextnode. After the new  nrevious nodes and proceed with the current deletion, but in
node has been successfully inserted, it tries in lines P2-P18%, 4 to avoid infinite recursiorDeleteNexis only called

to update the prev pointer of the next node, following the it 5 next pointer from a non-marked nodegievhas been

same scheme as for tRishLefoperation. observed (i.elastlink.dis false). Otherwise iprevis not
~ ThePopLeftoperation, see Figure 4, first repeatedly tries the previous node afodeit is updated to be the next node.
in lines PL2-PL24 to mark the leftmost nodao@g as The Helplnsertprocedure, see Figure 5, repeatedly tries

deleted. Before trying to update the link field, it first as- in lines HI2-HI28 to correct the prev pointer of the given
sures in line PL4 that the deque is not empty, and secondlynode fods, given a suggestion of a previous (not necessar-
in line PL9 that the node is not already marked for deletion. jly the first) node prev). Before trying to update the link
If the deque was detected to be empty, the function returns field with the CAS operation in line HI23, it assures in line
If nodewas marked for deletion, it tries to update the next Hi4 that theprevnode is not marked, in line HI13 thabde
pointer of theprevnode by calling théeleteNextunction,  is not marked, and in line HI16 thatrev is the previous
and themodeis updated to be the leftmost node. If the Prev node ofnode If prev is marked we m|ght need to delete
pointer ofnodewas incorrect, it tries to update it by calling it before we can updatprevto one of its previous nodes
the HelpInsertfunction. After the node has been success- and proceed with the current insertion, but in order to avoid
fully marked by the successful CAS operation in line PL15, unnecessary recursioBeleteNexis only called if a next
it tries in line PL16 to update the next pointer of theev  pointer from a non-marked node poev has been observed
node by calling theDeleteNextunction, and in line PL17  (j.e. lastlink.dis false). Ifnodeis marked, the procedure is
to update the prev pointer of theextnode by calling the  aborted. Otherwise ifrevis not the previous node oibde
HelpInsertfunction. After this, it tries in line PL25 to break it is updated to be the next node. If the update in line HI23
possible cyclic references that includesdeby calling the  succeeds, there is though the possibility thatptey node
RemoveCrossReferenitction. was deleted (and thus the prev pointenotlewas possibly
The PopRightoperation, see Figure 4, first repeatedly already updated by the concurrent Pop operation) directly
tries in lines PR2-PR24 to mark the rightmost nodedg before the CAS operation. This is detected in line HI26 and
as deleted. Before trying to update the link field, it assures i) then the update is possibly retried with a nesevnode.
in line PR5 that the node is not already marked for deletion, The RemoveCrossReferengeocedure, see Figure 5,
ii) in the same line that the prev pointer of the taikek) tries to break cross-references between the given node
node is correct, and iii) in line PR9 that the deque is not (nodg and any of the nodes that it references, by repeatedly
empty. If the deque was detected to be empty, the functionupdating the prev or next pointer as long as it references a



marked node. First, we can safely assume that the link fieldial and the full extended algorithm is presented in Appendix
of nodeis not concurrently updated by any other operation. A.

Before the procedure is finished, it assures in line RC4 that

the previous nodepfey) is not marked, and in line RC10 4 Correctness

that the next nodengx) is not marked. As long aprev

is marked it is traversed to the left, and as longhagtis hi ) h f of laorith
marked it is traversed to the right, while continuously up- In this section we present the proof of our algorithm. We

dating the link field ofodein lines RC6 or RC12. first prove that our glgorithm is a linearizable one [10] and
then we prove that it is lock-free. A set of definitions that

will help us to structure and shorten the proof is first ex-
plained in this section. We start by defining the sequential
semantics of our operations and then introduce two defini-
tions concerning concurrency aspects in general.

Because th®eleteNexandHelplnsertare often used in
the algorithm for “helping” late operations that might other-
wise stop progress of other concurrent operations, the algo
rithm is suitable for pre-emptive as well as fully concurrent
systems. In fully concurrent systems though, the helping
strategy as well as heavy contention on atomic primitives,
can downgrade the performance significantly. Therefore the
algorithm, after a number of consecutive failed CAS oper-
ations (i.e. failed attempts to help concurrent operations)
puts the current operation into back-off mode. When in
back-off mode, the thread does nothing for a while, and
in this way avoids disturbing the concurrent operations that
might otherwise progress slower. The duration of the back-
off is proportional to the number of threads, and for each
consecutive entering of the back-off mode during one op-
eration invocation, the duration of the back-off is increased
exponentially.

Definition 1 We denote witlf); the abstract internal state

of a deque at the time Q; = [vy,...,v,] is viewed as an
list of valuesv, where|Q;| > 0. The operations that can
be performed on the deque are PushLiftPushRightR),
PopLeft(PL) and PopRightPR). The timet; is defined as
the time just before the atomic execution of the operation
that we are looking at, and the tinte is defined as the time
just after the atomic execution of the same operation. In the
following expressions that define the sequential semantics
of our operations, the syntax fs : Oy, S3, where$; is the
conditional state before the operatian, andS; is the re-
sulting state after performing the corresponding operation:

3.4 Extending to dynamic maximum sizes

Qtl : L<V1)’ Qt2 = [Ul} + Qt1 (1)
In order to allow usage of a system-wide dynamic mem-
ory handler (which should be lock-free and have garbage
collection capabilities), all significant bits of an arbitrary Qu : R(V1): @i, = Qu, + [v1] ©
pointer value must be possible to be represented in both the
next and prev pointers. In order to atomically update both Qi =0:PL)=1,Q, =0 A3)

the next and prev pointer together with the deletion mark,

the CAS-operation would need the capability of atomically

updating at leas30 + 30 4+ 1 = 61 bits on a 32-bit system Qt, = [v1] + Q1 : PL() = v1,Q¢, = Q1 (4)

(and62 462+ 1 = 125 bits on a 64-bit system as the point-

ers are then 64 bit). However, most current 32 and 64-bit

systems only support CAS-operations of single word-size.
An interesting observation of the current algorithm is

that it never changes both the prev and next pointer in Qi, = Q1+ [v1] : PR() =v1,Qs, = Q1 (6)

the atomic updates, and the pre-condition associated with

the atomic CAS-update only involves the pointer that is Definition 2 In a global time model each concurrent op-

changed. eration Op “occupies” a time intervallbo,, fo,] on the
Therefore it is possible to keep the prev and next point- linear time axis(bo, < fop). The precedence relation

ers in separate words, duplicating the deletion mark in (denoted by ') is a relation that relates operations of

each of the words. Thus, full pointer values can be used,a possible executior)p; — Op, means thatOp; ends

still by only using standard CAS-operations. In order beforeOp, starts. The precedence relation is a strict par-

to preserve the correctness of the algorithm, the deletiontial order. Operations incomparable under are called

mark of the next pointer should always be set first, in the overlapping The overlapping relation is denoted Byand

PopLeft/PopRighfunctions, and the deletion mark of the is commutative, i.e.Op; || Ops and Opy || Op;. The

prev pointer should be possibly set in the very beginning of precedence relation is extended to relate sub-operations

the DeleteNexprocedure. The remaining changes are triv- of operations. Consequently, @p; — Ops, then for

Qy, =0:PR()=L,Q, =0 (%)



any sub-operationsp; and op, of Op; and Op-, respec- the prev node was changed to point to the new node which
tively, it holds thatop; — ops. We also define the di- contains the value. Consequently, the linearizability point

rect precedence relations 4, such that ifOp; —4Op-, then will be the CAS sub-operation in line R11. a
Op1 — Op, and moreover there exists no operatiomps
such thatOp; — Opz — Opa. Lemma 2 A PushLeft operation{(v)), takes effect atomi-

. . . cally at one statement.
Definition 3 In order for an implementation of a shared

concurrent data object to be linearizable [10], for every Proof: The decision, state-read and state-change point for
concurrent execution there should exist an equal (in the a PushLeftoperation which succeed€ (v)), is when the
sense of the effect) and valid (i.e. it should respect the se-CAS sub-operation in line L12 (see Figure 4) succeeds. The
mantics of the shared data object) sequential execution thatstate of the deque wag¥{, = Q) directly before the pass-
respects the partial order of the operations in the concur- ing of the decision point. The state of the deque directly
rent execution. after passing the decision point will B¢, = [v] + @, as
] ] the next pointer of the head node was changed to point to
Next we are going to study the possible concurrent exe-he new node which contains the valueConsequently, the

cutions of our implementation. First we need to define the jinearizability point will be the CAS sub-operation in line
interpretation of the abstract internal state of our implemen- | 15 0O

tation.

Lemma 3 A PopRight operation which failsHR() = 1),

Definition 4 The valuev is present $i.Q[i] = v) in the )
takes effect atomically at one statement.

abstract internal staté) of our implementation, when there

is a connected chain of next pointers (i.e. prev.link.next) Proof: The decision point for £opRightoperation which
from a present node (or the head node) in the doubly linked ¢ ;- (PR() = 1) is the check in line PR9. Passing of
list that connects to a node that contains the valuand '

the decision point together with the verification in line PR5
this node is not marked as deleted (i.e. node.link.d=false). P g

gives that the next pointer of the head node must have been

Definition 5 The decision point of an operation is defined pointing to the tail nodeqp,, = () directly before the read

as the atomic statement where the result of the operation iSsub-ope_ratlon of the link field n l'ne.PR4Z I.€. _the s_tate—
finitely decided, i.e. independent of the result of any sub- read point. Consequently, the linearizability point will be

operations after the decision point, the operation will have the read sub-operation in line PRA4. =

the same result. We define the state-read point of an opera- ) ) .

tion to be the atomic statement where a sub-state of the pri-Lémma 4 A PopRight operation which succeeds#() =
ority queue is read, and this sub-state is the state on whichv) takes effect atomically at one statement.

the decision point depends. We also define the state-changgroof: The decision point for @opRightoperation which

point as the atomic statement where the operation changes Y i S
the abstract internal state of the priority queue after it has succeedsi f2() = v) is when the CAS sub-operation inline

assed the corresponding decision point PR15 succeeds. Passing of the decision point together with
P P 9 point. the verification in line PR5 gives that the next pointer of the
We will now use these points in order to show the ex- to-be-deleted node must have been pointing to the tail node

istence and location in execution history of a point where (@i, = @1 + [v]) directly before the CAS sub-operation

the concurrent operation can be viewed as it occurred atomdn line PR15, i.e. the state-read point. Directly after pass-
ically, i.e. thelinearizability point ing the CAS sub-operation (i.e. the state-change point) the

to-be-deleted node will be marked as deleted and therefore
Lemma 1l A PushRight operation K(v)), takes effect not present in the dequ&){, = @Q:). Consequently, the
atomically at one statement. linearizability point will be the CAS sub-operation in line
PR15. O
Proof. The decision, state-read and state-change point for
aPushRightoperation which succeed&(v)), is whenthe | emma 5 A PoplLeft operation which failsHL() = L),
CAS sub-operation in line R11 (see Figure 4) succeeds. Thegkes effect atomically at one statement.
state of the deque wag)({, = @);) directly before the pass-
ing of the decision point. The prev node was the very last Proof: The decision point for &opLeftoperation which
present node as it pointed (verified by R6 and the CAS in fails (PL() = 1) is the check in line PL4. Passing of the
R11) to the tail node directly before the passing of the deci- decision point gives that the next pointer of the head node
sion point. The state of the deque directly after passing themust have been pointing to the tail nodg;{ = 0) directly
decision point will be));, = @1 + [v] as the next pointer of  before the read sub-operation of the link field in line PL3,



i.e. the state-read point. Consequently, the linearizability as detected in line P5. If a new node is inserted the cor-
point will be the read sub-operation in line PL3. O respondingPushLeft(PushRight operation will make sure
that the prev pointer is corrected. If either the next or this
node is deleted, the correspondiRgpLeft(PopRigh} op-
eration will make sure that the prev pointer is corrected. If
the prev pointer was successfully changed it is possible that
Proof: The decision point for @opLeftoperation which ~ this node was deleted before we changed the prev pointer
succeedsPL() = v) is when the CAS sub-operation in of the next node. If this is dgtected in line P10, then the
line PL15 succeeds. Passing of the decision point togetheiPréV pointer of the next node is corrected by Helpinsert
with the verification in line PL9 gives that the next pointer function. _ _
of the head node must have been pointing to the present After successfully marking the to-be-deleted nodes in
to-be-deleted nodeq;, = [v] + Q1) directly before the line PL15 (PR15), tthopLgﬁ(Popngh) functions will
read sub-operation in line PL3, i.e. the state-read point. m.ake sure that the connecting next pointer of the prev node
Directly after passing the CAS sub-operation in line PL15 Will be changed to point to the closest present node to the
(i.e. the state-change point) the to-be-deleted node will befight, by calling theDeleteNextprocedure in line PL16
marked as deleted and therefore not present in the dequéPR16). It will also make sure that the corresponding prev
(—3i.Q4,[i] = v). Unfortunately this does not match the pointer of the next che will be corrected by calling the
semantic definition of the operation. HelpInsertfunction in line PL17 (PR17).

However, none of the other concurrent operations lin-  1heDeleteNexprocedure will repeatedly try to change
earizability points is dependent on the to-be-deleted node’sth® Néxt pointer of the prev node that points to the deleted
state as marked or not marked during the time interval from N°de, until it either succeeds changing the next pointer
the state-read to the state-change point. Clearly, the lin-In ineé DN28 or some concurrereleteNex@already suc-
earizability points of Lemmas 1 and 2 are independent asC€€ded as detected in line DNS.
the to-be-deleted node would be part (or not part if not  1heHelpinsertprocedure will repeatedly try to change
present) of the correspondin@, terms. The linearizabil- the prev pointer of thg .nO('je to match with the qext pointer
ity points of Lemmas 3 and 5 are independent, as those in-Of the prev node, until it either succeeds changing the prev

earizability points depend on the head node’s next poimerpointer in line HI23 or the node is deleted as detected in line
pointing to the tail node or not. Finally, the linearizabil- HI13. If it succeeded with changing the prev pointer, the

ity points of Lemma 4 as well as this lemma are indepen- Prév node might have been deleted directly before changing
dent, as the to-be-deleted node would be part (or not parche prev pc')mt.er, and therefore it is detected if thg prev .node
if not present) of the corresponding, terms, otherwise 'S marked in line HI26 and then the prpcedure will continue
the CAS sub-operation in line PL15 of this operation would TYing to correctly change the prev pointer. O
have failed.

Therefore all together, we could safely interpret the to-
be-deleted node to be not present already directly after pass

ing the state-read point@(;, = @1). Consequently, the lin-  proof: We have to show that eadtopRightor PopLeftop-
earizability point will be the read sub-operation inline PL3. gration takes responsibility for that the deleted node will
= finally have no references to it. The possible references are
caused by other nodes pointing to it. Following Lemma 7
Lemma 7 When the deque is idle (i.e. no operations are we know that no present nodes will reference the deleted
being performed), all next pointers of present nodes are node. It remains to show that all paths of references from
matched with a correct prev pointer from the correspond- a deleted node will finally reference a present node, i.e.
ing present node (i.e. all linked nodes from the head or tail there are no cyclic referencing. After the node is deleted in
node are present in the deque). lines PL16 and PL17 (PR16 and PR17), it is assured by the
PopLeft(PopRighj operation by calling th&emoveCross-
Proof: We have to show that each operation takes responsi-Referencg@rocedure in line PL25 (PR25) that both the next
bility for that the affected prev pointer will finally be cor- and prev pointers are pointing to a present node. If any
rect after changing the corresponding next pointer. Af- of those present nodes are deleted before the referencing
ter successfully changing the next pointer in thgshlLeft deleted node is garbage collected in line ,RemoveCross-
(PushRight in line L12 (R11) operation, the correspond- Referenceprocedures called by the correspondiPapleft
ing prev pointer is tried to be changed in line P7 repeatedly or PopRightoperation will assure that the next and prev
until i) it either succeeds, ii) either the next or this node is pointers of the previously present node will point to present
deleted as detected in line P4, iii) or a new node is insertednodes, and so on recursively. TRemoveCrossReference

Lemma 6 A PopLeft operation which succeedBI{() =
v), takes effect atomically at one statement.

Lemma 8 When the deque is idle, all previously deleted
nodes are garbage collected.



procedure repeatedly tries to change prev pointers to pointthe equality in line DN5 will hold). As long as the prev
to the previous node of the referenced node until the ref- node is marked it will be traversed to the left in line DN16,
erenced node is present, detected in line RC4 and possiblyand if it is the left-most marked node the prev node will be
changed in line RC6. The next pointer is correspondingly deleted by recursively callinBeleteNexin line DN14. If
detected in line RC10 and possibly changed in line RC12. the prev node is not marked it will be traversed to the right.
O As there is a limited number of changes and thus a limited
number of marked nodes left of the to-be-deleted node, the
Lemma 9 The path of prev pointers from a node is always prev node will finally traverse to the right and either of the
pointing a present node that is left of the current node. termination criteria will be fulfilled.
The loop HI2-HI28 will terminate if either the to-be-
Proof: We will look at all pOSSib”itieS where the prev  corrected node is marked in line HI13 or if the CAS
pointer is set or changed. The setting in line L10 (R9) is sub-operation in line HI23 succeeds and prev node is not
clearly to the left as it is verified by L6 and L12 (R5 and marked. We know that from the start of the execution of
R11). The change of the prev pointer in line P7 is to the left the |0op, that the prev node is left of the to-be-corrected
as verified by P5 and that nodes are never moved relativelynode. Following from Lemma 9 this order will hold by
to each other. The change of the prev pointer in line HI23 traversing the prev node through its prev pointer. Conse-
is to the left as verified by line HI3 and HI16. Fina”y, the quenﬂy, traversing the prev node through the next pointer
change of the prev pointer in line RC6 is to the left as it is wj| finally cause the prev node to be directly left of the to-
changed to the prev pointer of the previous node. O be-corrected node if this is not deleted (and the CAS sub-
operation in line HI23 will finally succeed), otherwise line
Lemma 10 All operations will terminate if exposed to a HI13 will succeed. As long as the prev node is marked it
limited number of concurrent changes to the deque. will be traversed to the left in line HI8, and if it is the left-
i . most marked node the prev node will be deleted by calling
Proof:_ The.amount of changes an operation COUI_d EXPEI" peleteNextn line HI6. If the prev node is not marked it
ence is limited. Because of the reference counting, NON€,yill be traversed to the right. As there is a limited number

of the nodes which is referenced tq by local variables can of changes and thus a limited number of marked nodes left
be garbage collected. When traversing through prev or NeXlyt the to-be-corrected node, the prev node will finally tra-

pointers, the memory management guarantees atomicity 0{,q e 1 the right and either of the termination criteria will
the operations, thus no newly inserted or deleted nodes WI||be fulfilled

be missed. We also know that the rglative ppsitions ofnodes 1o loop RC1-RC15 will terminate if both the prev node
that are referenced to by local variables will not change as_ . the next node of the to-be-deleted node is not marked

nod_es are never moved in the de_que. Most loops in the OP3, line RC4 respectively line RC10. We know that from the
erations retry because a change in the state of some node(gyt of the execution of the loop, the prev node is left of the
was detected In the ending CAS sub—operauo_n, and thento—be—deleted node and the next node is right of the to-be-
retry by re-reading the local vapables (and possibly correct- deleted node. Following from Lemma 9, traversing the prev
ing the state of the nodes) until no concurrent changes Wa$hode through the next pointer will finally reach a not marked
detected by the CAS sub-opgratlon and therefore Fhe CASnode or the head node (which is not marked), and traversing
succeeded and the loop terminated. Those loops will clearlyy, o next node through the next pointer will finally reach a

termina_te after a limited number of concurrent changes. In- not marked node or the tail node (which is not marked), and
cluded in that type of loops are L4-L15, R4-R14, P1-P15, \yo1h of the termination criteria will be fulfilled. 0

PL2-PL24 and PR2-PR24.

The loop DN4-DN32 will terminate if either the prev | onyma 11 With respect to the retries caused by synchro-
node IS eq.uaI. to the next node in line DN5 or the CAS sub- nization, one operation will always do progress regardless
operation in I_me DN28 succeeds. We know frqm the start of the actions by the other concurrent operations.
of the execution of the loop, that the prev node is left of the
to-be-deleted node which in turn is left of the next node. Proof: We now examine the possible execution paths of our
Following from Lemma 9 this order will hold by travers- implementation. There are several potentially unbounded
ing the prev node through its prev pointer and traversing theloops that can delay the termination of the operations. We
next node through its next pointer. Consequently, traversingcall these loops retry-loops. If we omit the conditions
the prev node through the next pointer will finally cause the that are because of the operations semantics (i.e. search-
prev node to be directly left of the to-be-deleted node if this ing for the correct criteria etc.), the loop retries when
is not already deleted (and the CAS sub-operation in line sub-operations detect that a shared variable has changed
DN28 will finally succeed), otherwise the prev node will fi- value. This is detected either by a subsequent read sub-
nally be directly left of the next node (and in the next step operation or a failed CAS. These shared variables are only



changed concurrently by other CAS sub-operations. Ac- optimistic performance of an imaginary CAS2 implemen-
cording to the definition of CAS, for any number of concur- tation in hardware. The other approach was to implement
rent CAS sub-operations, exactly one will succeed. This CAS2 using one of the most efficient software implementa-
means that for any subsequent retry, there must be ondions of CASN known that could meet the needs of [12] and
CAS that succeeded. As this succeeding CAS will cause its[3], i.e. the implementation by Harris et al [6].
retry loop to exit, and our implementation does not contain A clean-cache operation was performed just before each
any cyclic dependencies between retry-loops that exit with sub-experiment using a different implementation. All im-
CAS, this means that the correspondirgshRight Push- plementations are written in C and compiled with the high-
Left, PopRightor PopLeftoperation will progress. Conse- est optimization level. The atomic primitives are written in
quently, independent of any number of concurrent opera-assembler.
tions, one operation will always progress. O The experiments were performed using different number
of threads, varying from 1 to 28 with increasing steps. Three
Theorem 1 The algorithm implements a correct, memory different platforms were used, with varying number of pro-
stable, lock-free and linearizable deque. cessors and level of shared memory distribution. To get a
highly pre-emptive environment, we performed our experi-
Proof: Following from Lemmas 1, 2, 3, 4, 5 and 6 and ments on a Compagq dual-processor Pentium Il PC running
by using the respective linearizability points, we can create Linux, and a Sun Ultra 80 system running Solaris 2.7 with 4
an identical (with the same semantics) sequential executiorProcessors. In order to evaluate our algorithm with full con-

that preserves the partial order of the operations in a con-currency we also used a SGI Origin 2000 system running
current execution. Following from Definition 3, the imple- Irix 6.5 with 29 250 MHz MIPS R10000 processors. The

mentation is therefore linearizable. results from the experiments are shown in Figure 6. The av-
Lemmas 10 and 11 give that our implementation is lock- €rage execution time is drawn as a function of the number
free. of threads.

Following from Lemmas 10, 1, 2, 3, 4, 5 and 6 we can Our results show that both the CAS-based algorithms
conclude that all operations will terminate with the correct outperforms the CAS2-based implementations for any num-
result. ber of threads. For the systems with low or medium concur-

Following from Lemma 8 we know that the maximum rency and uniform memory architecture, [13] has the best

memory usage will be proportional to the number of present Performance. However, for the system with full concur-
values in the deque. rency and non-uniform memory architecture our algorithm

0 performs significantly better than [13] from 2 threads and
more, as a direct consequence of the disjoint-parallel acces-
sible nature of our algorithm.

5 Experimental Evaluation

, 6 Conclusions
In our experiments, each concurrent thread performed

1000 randomly chosen sequential operations on a shared

deque, with a distribution of 1/BushRight 1/4 PushLeft We have presented the first lock-free algorithmic imple-
1/4 PopRightand 1/4PopLeftoperations. Each experiment mentation of a concurrent deque that has all the following
was repeated 50 times, and an average execution time fofeatures: i) it is disjoint-parallel accessible with retained
each experiment was estimated. Exactly the same sequerParallelism, i) uses a fully described lock-free memory
tial operations were performed for all different implementa- Management scheme, and iii) uses atomic primitives which
tions compared. Besides our implementation, we also per-are available in modern computer systems, even when ex-
formed the same experiment with the lock-free implemen- tended for dynamic maximum sizes.

tation by Michael [13] and the implementation by Martin ~ We have performed experiments that compare the per-
et al [12], two of the most efficient lock-free deques that formance of our algorithm with two of the most efficient
have been proposed. The algorithm by Martin et al [12] algorithms of lock-free deques known, using full imple-
was implemented together with the corresponding memorymentations of those algorithms. The experiments show that
management scheme by Detlefs et al [3]. However, as bothour implementation performs significantly better on sys-
[12] and [3] use the atomic operation CAS2 which is not tems with high concurrency and non-uniform memory ar-
available in any modern system, the CAS2 operation waschitecture.

implemented in software using two different approaches. We believe that our implementation is of highly practical
The first approach was to implement CAS2 using mutual interest for multi-processor applications. We are currently
exclusion (as proposed in [12]), which should match the incorporating it into the NOBLE [16] library.
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Figure 6. Experiment with deques and high contention. Logarithmic scales to the right.
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union Link

_:word
(p,d): (pointer to Node,boolean)

structure Node
value: pointer to word
prev: union Link
next: union Link

/I Global variables

head, tail:pointer to Node

/I Local variables
node,prev,prev2,next,next@ointer to Node
link1,lastlink: union Link

function CreateNode(valugointer to word):pointer to Node

Cl node:=MALLOC_NODE();
C2 node.value:=value;
C3 return node;

procedure ReleaseReferences(noginter to Node)
RR1 RELEASE_NODE(node.prev.p);
RR2 RELEASE_NODE(node.next.p);

procedure PushLeft(valuepointer to word)
L1  node:=CreateNode(value);

L2  prev:=COPY_NODE(head);

L3  next:=READ_NODE(&prev.next);
L4  while true do

L5 if prev.next£ (nextfalse) then

L6 RELEASE_NODE(next);

L7 next:=READ_NODE(&prev.next);
L8 continue;

L9 node.prev:¥prevfalse);

L10 node.next:nextfalse);
L11 if CAS(&prev.next{nextfalse),(nodefalse)) then

L12
L13

COPY_NODE(node);
break;

L14 Back-Off
L15 PushCommon(node,next);

procedure PushRight(valuepointer to word)
R1 node:=CreateNode(value);

R2  next:=COPY_NODE(tail);

R3  prev:i=READ_NODE(&next.prev);
R4  while true do

R5 if prev.next# (nextfalse) then
R6 prev:=Helplnsert(prev,next);
R7 continue;

R8 node.prev:{prevfalse);

R9 node.next:fextfalse);

R10 if CAS(&prev.next{nextfalse),(nodefalse)) then

R11
R12

COPY_NODE(node);
break;

R13 Back-Off
R14 PushCommon(node,next);

procedure PushCommon(node, nexiointer to Node)
P1  while true do

P2 linkl:=next.prev;

P3 if link1.d = true or node.next (nextfalse) then
P4 break;

P5 if CAS(&next.prev,link1{nodefalse)) then
P6 COPY_NODE(node);

P7 RELEASE_NODE(link1.p);

P8 if node.prev.d #rue then

P9 prev2:=COPY_NODE(node);

P10 prev2:=Helplnsert(prev2,next);
P11 RELEASE_NODE(prev2);

P12 break;

P13 Back-Off
P14 RELEASE_NODE(next);
P15 RELEASE_NODE(node);

function PopLeft(): pointer to word

PL1 prev:i=COPY_NODE(head);

PL2 while true do

PL3 node:=READ_NODE(&prev.next);
PL4 if node= tail then

PL5 RELEASE_NODE(node);
PL6 RELEASE_NODE(prev);
PL7 return _L;

PL8 linkl:=node.next;

PL9 if link1.d = true then

PL10 DeleteNext(node);

PL11 RELEASE_NODE(node);

PL12 continue;

PL13 if CAS(&node.next linkLlink1.ptrue)) then
PL14 DeleteNext(node);

PL15 next:=READ_DEL_NODE(&node.next);
PL16 prev:=Helplnsert(prev,next);

PL17 RELEASE_NODE(prev);

PL18 RELEASE_NODE(next);

PL19 value:=node.value;

PL20 break;

PL21 RELEASE_NODE(node);

PL22  Back-Off

PL23 RemoveCrossReference(node);

PL24 RELEASE_NODE(node);

PL25 return value;

function PopRight():pointer to word

PR1 next:=COPY_NODE(tail);

PR2 node:=READ_NODE(&next.prev);
PR3 while true do

PR4  if node.next4 (nextfalse) then

PR5 node:=Helplnsert(node,next);
PR6 continue;

PR7 if node= headthen

PRS8 RELEASE_NODE(node);
PR9 RELEASE_NODE(next);

PR10 return L;

Figure 7. The algorithm for dynamic maximum sizes, part 1(2).



PR11 if CAS(&node.nextnextfalse),(nextirue)) then
PR12 DeleteNext(node);

PR13 prev:=READ_DEL_NODE(&node.prev);
PR14 prev:=HelplInsert(prev,next);

PR15 RELEASE_NODE(prev);

PR16 RELEASE_NODE(next);

PR17 value:=node.value;

PR18 break;

PR19 Back-Off

PR20 RemoveCrossReference(node);

PR21 RELEASE_NODE(node);

PR22 return value;

procedure DeleteNext(nodepointer to Node)

DN1 while true do

DN2 link1:=node.prev;

DN3 if link1.d = true or

DN4 CAS(&node.prev,linkXJink1.ptrue)) then break;
DN5 lastlink.d:#rue;

DN6 prev:i=READ_DEL_NODE(&node.prev);
DN7 next:=READ_DEL_NODE(&node.next);
DN8 while true do

DN9 if prev= nextthen break;

DN10 if next.next.d strue then

DN11 next2:=READ_DEL_NODE(&next.next);
DN12 RELEASE_NODE(next);

DN13 next:=next2;

DN14 continue;

DN15 prev2:=READ_NODE(&prev.next);

DN16 if prev2= NULL then

DN17 if lastlink.d =false then

DN18 DeleteNext(prev);

DN19 lastlink.d:#rue;

DN20 prev2:=READ_DEL_NODE(&prev.prev);
DN21 RELEASE_NODE(prev);

DN22 prev:=prev2,

DN23 continue;

DN24 if prev2+# nodethen

DN25 lastlink.d:#falsg

DN26 RELEASE_NODE(prev);

DN27 prev:=prev2;

DN28 continue;

DN29 RELEASE_NODE(prev2);

DN30 if CAS(&prev.next{nodefalse),(nextfalse)) then
DN31 COPY_NODE(next);

DN32 RELEASE_NODE(node);

DN33 break;

DN34 Back-Off

DN35 RELEASE_NODE(prev);

DN36 RELEASE_NODE(next);

function Helplnsert(prev, nodepointer to Node)
:pointer to Node

HI1 lastlink.d:true;

HI2  while true do

HI3 prev2:=READ_NODE(&prev.next);

Hl4 if prev2= NULL then

HI5 if lastlink.d =false then

HI6 DeleteNext(prev);

HI7 lastlink.d:=true;

HI8 prev2:=READ_DEL_NODE(&prev.prev);
HI9 RELEASE_NODE(prev);

HI10 prev:=prev2,

HI11 continue;

HI12 link1:=node.prev;

HI13  if linkl.d = true then

HI14 RELEASE_NODE(prev2);
HI15 break;

HI16  if prev2# nodethen

HI17 lastlink.d:#alse

HI18 RELEASE_NODE(prev);
HI19 prev:=prev2,

HI20 continue;

HI21  RELEASE_NODE(prev2);

HI22  if CAS(&node.prev,linkX{prevfalse)) then
HI23 COPY_NODE(prev);

HI24 RELEASE_NODE(link1.p);

HI25 if prev.prev.d= true then continue;
HI126 break;

HI27  Back-Off

HI28 return prev;

procedure RemoveCrossReference(nogeinter to Node)
RC1 while true do

RC2 prev:=node.prev.p;

RC3 if prev.next.d #rue then

RC4 prev2:=READ_DEL_NODE(&prev.prev);
RC5 node.prev:gprev2irue);

RC6 RELEASE_NODE(prev);

RC7 continue;

RC8 next:=node.next.p;

RC9 if next.next.d #true then

RC10 next2:=READ_DEL_NODE(&next.next);
RC11 node.next:cmext2frue);

RC12 RELEASE_NODE(next);

RC13 continue;

RC14 break;

Figure 8. The algorithm for dynamic maximum sizes, part 2(2).



